User Tools

Site Tools


project:3dpb-med:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
project:3dpb-med:start [2026/01/18 03:19] gribaartproject:3dpb-med:start [2026/01/18 03:30] (current) gribaart
Line 2: Line 2:
 {{template>:project:infobox| {{template>:project:infobox|
 name=Autonomous Wound Treatment Robot| name=Autonomous Wound Treatment Robot|
-image=|+image=:3dpb-med:unnamed.jpg?400|
 founder=[[user:artem]]| founder=[[user:artem]]|
 depends=[[3d_printed_robotics_initiative]]| depends=[[3d_printed_robotics_initiative]]|
Line 11: Line 11:
 status = planning status = planning
 ~~ ~~
 +
 +
  
 ===== Motivation ===== ===== Motivation =====
Line 25: Line 27:
   * Emergency systems fail patients over bureaucracy   * Emergency systems fail patients over bureaucracy
   * Consistent, accessible first-line care shouldn't depend on luck   * Consistent, accessible first-line care shouldn't depend on luck
-  * Robots don't have empathy, but they also don't have apathy+  * Technology can provide the baseline care that humans sometimes refuse to give
  
 ===== What We're Building ===== ===== What We're Building =====
  
-An open-source 3D-printed robotic system for autonomous wound assessment and treatment:+An open-source 3D-printed robotic system for autonomous wound assessment and treatment.
  
 **Core Functions:** **Core Functions:**
Line 35: Line 37:
   * Ultrasonic wound debridement (bacteria elimination, biofilm removal)   * Ultrasonic wound debridement (bacteria elimination, biofilm removal)
   * Automated cleaning and treatment application   * Automated cleaning and treatment application
-  * Prescription recommendations (antibiotics yes/no)+  * Treatment recommendations
  
-**Target Applications:**+**Potential Applications:**
   * Emergency department triage (overnight/weekend shifts)   * Emergency department triage (overnight/weekend shifts)
   * Rural clinics with limited staff   * Rural clinics with limited staff
-  * Veterinary clinics (regulatory pathway is easier+  * Veterinary clinics (easier regulatory pathway for initial testing
-  * Field medicine (refugee camps, disaster zones, military)+  * Field medicine (refugee camps, disaster zones
 + 
 +**Open Source Philosophy:** 
 +  * All hardware designs (CAD filesSTL files) 
 +  * All software (control systems, AI models, protocols) 
 +  * Full documentation for replication 
 +  * MIT/Apache license
  
 ===== Technical Overview ===== ===== Technical Overview =====
  
-**Hardware:** +==== Hardware ====
-  * 3D-printed robotic arm (6-DOF, PETG/ABS) +
-  * 4 tool attachments: air nozzle, liquid spray, ultrasonic probe, ointment applicator +
-  * AI camera + depth sensor +
-  * Raspberry Pi / Arduino control system+
  
-**Treatment Protocol:** +**Robotic Arm:** 
-  - AI scan → assess severity +  * 3D-printed structure (PETG/ABS for sterilization compatibility
-  - Liquid rinse → remove debris +  * 6-DOF design based on existing open-source arms 
-  - Ultrasonic debridement (in antiseptic bath, 30-60 sec+  * Budget servo/stepper motors 
-  - Final rinse → sterile flush +  * Tool changer mechanism for multiple attachments
-  Air dry → compressed air +
-  - Apply ointment → levomekol or equivalent +
-  - Verification scan → repeat if needed +
-  - Output → antibiotic recommendation+
  
-**Key Components:** +**Four Tool Attachments:** 
-  * Vision: OpenCV + TensorFlow (wound segmentationinfection classifier+  * **Air nozzle** — sterile compressed air (debris removaldrying
-  * Control: Custom kinematics + safety monitoring +  * **Liquid dispenser** — saline/antiseptic spray system 
-  * Data: Treatment logging for continuous improvement+  * **Ultrasonic probe** — 20-40 kHz debridement head 
 +  * **Ointment applicator** — automated dosing system
  
-===== Realistic Roadmap =====+**Vision System:** 
 +  * USB camera + depth sensor 
 +  * AI-based wound assessment 
 +  * Thermal imaging (optional, for infection detection)
  
-==== Phase 1Prototype (Months 1-6) ====+**Control:** 
 +  * Raspberry Pi 4 or Arduino-based controller 
 +  * Force/distance sensors for safety 
 +  * Emergency stop mechanism
  
-  * ☐ Recruit 2-3 part-time collaborators (robotics, ML, medical background preferred) +==== Treatment Protocol ====
-  * ☐ Design and 3D print basic arm structure +
-  * ☐ Test individual tool attachments on synthetic models +
-  * ☐ Build AI vision system (wound detection accuracy goal: 70%+) +
-  * ☐ First functional demo on synthetic wounds +
-  * ☐ Document build process for open-source community +
-  * ☐ Apply for small grants (EU innovation funds, health-tech accelerators: €10-50k)+
  
-**Success criteria:** Working prototype treats synthetic wounds with 70%AI accuracy+  - **AI scan** → assess wound (size, depth, contamination, infection signs) 
 +  - **Pre-cleaning** → saline rinse air debris removal 
 +  - **Ultrasonic debridement** → antiseptic bath + ultrasound (30-60 sec) 
 +    * Critical: ultrasound requires liquid medium to work 
 +  - **Final rinse** → sterile saline flush 
 +  - **Air dry** → compressed air 
 +  - **Apply ointment** → levomekol or equivalent 
 +  - **Verification scan** → check cleaning quality, repeat if needed 
 +  - **Output recommendation** → antibiotic prescription yes/no
  
-==== Phase 2: Validation & Pivot Exploration (Months 7-12) ====+==== Software Stack ====
  
-  ☐ Attempt human medical partnerships (expect resistance) +**Vision & AI:** 
-  ☐ **Pivot to veterinary applications** (easier regulation, faster market entry) +  OpenCV for image processing 
-  * ☐ Partner with 2-3 vet clinics for supervised testing +  * TensorFlow/PyTorch for ML models 
-  * ☐ Collect real-world data (target: 100+ treatments+  * Wound segmentation (U-Net architecture
-  * ☐ Improve AI accuracy to 85%+ +  * Infection classifier (CNN)
-  * ☐ Regulatory research: CE Mark pathway, veterinary vs. human certification +
-  * ☐ Explore NGO partnerships (field medicine, refugee camps)+
  
-**Success criteria:** 3 vet clinics piloting system, 85%+ accuracy, clear regulatory pathway identified+**Control System:** 
 +  * Custom kinematics or MoveIt integration 
 +  * Real-time force monitoring 
 +  * Safety collision detection 
 +  * Treatment protocol state machine
  
-==== Phase 3: Traction Funding (Months 13-24) ====+**Data Logging:** 
 +  * All treatments logged for quality analysis 
 +  * Continuous model improvement from field data
  
-  * ☐ Establish veterinary market beachhead (€500-1000/month subscriptions) +===== Roadmap =====
-  * ☐ Target revenue: €1500-3000/month from pilot clients +
-  * ☐ Publish results: academic papers, conference presentations +
-  * ☐ Build case study portfolio (video demos, testimonials) +
-  * ☐ Apply for larger grants (EU Horizon, health innovation funds: €50-200k) +
-  * ☐ **Return to human medicine** with proven veterinary technology +
-  * ☐ Seek pre-seed funding (angels, health-tech VCs: €200-500k)+
  
-**Success criteria:** €2-5k MRR, published validation data, funding secured+==== Phase 1Proof of Concept (Months 1-6) ====
  
-==== Phase 4Scale (Months 25-36====+  * ☐ Design 3D-printable arm structure 
 +  * ☐ Source and test motors, sensors, components 
 +  * ☐ Build single-axis test rig 
 +  * ☐ Test each tool attachment independently: 
 +    * ☐ Air nozzle pressure control 
 +    * ☐ Liquid dispenser accuracy 
 +    * ☐ Ultrasonic probe effectiveness 
 +    * ☐ Ointment application consistency 
 +  * ☐ Build AI vision system (target: 70%+ accuracy on synthetic wounds) 
 +  * ☐ Create synthetic wound models for testing 
 +  * ☐ First complete treatment cycle demonstration
  
-  ☐ Grow team to 5-7 people (hire engineers, regulatory specialist) +**Milestone:** Working prototype treats synthetic wounds with basic automation
-  ☐ Begin CE Mark certification process (human medical device) +
-  * ☐ Expand deployments10+ veterinary sites, 2-3 human pilots (NGO/field) +
-  * ☐ Develop enterprise features (hospital integration, data analytics) +
-  * ☐ Establish dual business model: +
-    * Open-source community edition +
-    Commercial enterprise edition (support, certification, compliance) +
-  ☐ Seed round fundraising (€500k-1M)+
  
-**Success criteria:** Regulatory approval in progress, €10-30k MRR, seed funding closed+==== Phase 2Integration & Testing (Months 7-12) ====
  
-==== Phase 5: Growth (Months 36+) ====+  * ☐ Assemble full 6-DOF robotic arm 
 +  * ☐ Implement tool changer mechanism 
 +  * ☐ Integrate all subsystems (vision, control, safety) 
 +  * ☐ Improve AI accuracy to 85%on diverse wound types 
 +  * ☐ Collect 100+ test treatments on synthetic models 
 +  * ☐ Document full build process for replication 
 +  * ☐ Explore partnerships: 
 +    * ☐ Veterinary clinics (easier regulatory environment) 
 +    * ☐ NGOs working in field medicine 
 +    * ☐ University research collaboration
  
-  ☐ CE Mark obtained +**Milestone:** System consistently treats wounds autonomouslydocumentation published
-  ☐ Scale manufacturing and distribution +
-  ☐ Expand to multiple markets (EUrefugee/NGO sector, veterinary) +
-  * ☐ Series A consideration or sustainable profitability path+
  
-===== Success Metrics =====+==== Phase 3: Real-World Validation (Months 13-24) ====
  
-**6 months:** +  ☐ Partner with veterinary clinic for supervised testing 
-  * ✓ Working prototype +  ☐ Collect real-world treatment data 
-  * ✓ 2-3 active collaborators +  ☐ Refine protocols based on feedback 
-  * ✓ AI accuracy >70%+  ☐ Publish findings (blog posts, conference papers, videos) 
 +  * ☐ Build community of replicators 
 +  * ☐ Research regulatory pathways (veterinary first, then human) 
 +  * ☐ Explore grant opportunities for continued development
  
-**12 months:** +**Milestone:** 3+ external sites testing replicated systems, peer-reviewed validation
-  * ✓ 3+ veterinary pilot sites +
-  * ✓ AI accuracy >85% +
-  * ✓ €10-50k grant secured+
  
-**24 months:** +==== Phase 4Scale & Impact (Months 24+====
-  * ✓ €2-5k MRR +
-  * ✓ Published validation study +
-  * ✓ Pre-seed funding (€200-500k)+
  
-**36 months:** +  ☐ Support multiple deployment sites 
-  * ✓ CE Mark process underway +  ☐ Develop "enterprise" features for clinical integration 
-  * ✓ €10-30k MRR +  * ☐ Pursue medical device certification (if feasible) 
-  * ✓ Seed funding (€500k-1M)+  * ☐ Expand to humanitarian applications 
 +  * ☐ Continue open-source development with growing community
  
-===== Business Model =====+===== Bill of Materials =====
  
-**Open-Source Strategy:** +**Estimated component sources (not final):**
-  * Core hardware/software: MIT/Apache license +
-  * Community innovation → rapid iteration +
-  * Marketing effect → credibility & visibility+
  
-**Revenue Streams:** +^ Component Category ^ Examples ^ 
-  * **Hardware sales:** Certified systems to clinics (€10-20k per unit) +| 3D printed parts | PETG/ABS filament, printed in-house | 
-  * **SaaS subscription:** AI updatesanalyticscompliance reporting (€500-1000/month) +| Motors & actuators | Standard hobby servos or NEMA steppers | 
-  * **Consumables:** Sterile single-use attachmentstreatment solutions (€30-50 per patient) +| Electronics | Raspberry Pi 4Arduinomotor drivers | 
-  * **Support contracts:** Trainingmaintenancewarranty (€200-500/month)+| Vision | USB camera, Intel RealSense or similar depth sensor | 
 +| Ultrasonic system | Medical/dental ultrasonic scaler heads | 
 +| Pumps & dispensers | Peristaltic pumpssyringe pump mechanisms | 
 +| Sensors | Force sensorsproximity sensorslimit switches | 
 +| Pneumatics | Small air compressor, tubing, nozzles | 
 +| Consumables | Saline, antiseptic, medical ointments |
  
-**Target Markets (prioritized):** +**Cost target:** Keep total build under €5,000 for full system to enable widespread replication
-  - **Veterinary clinics** (Year 1-2: easier regulationfaster revenue) +
-  - **NGO/Field medicine** (Year 2-3: high impact, grant funding) +
-  - **Human emergency care** (Year 3+: after CE Mark)+
  
-===== Team & Roles =====+===== Success Metrics =====
  
-**Current:** +**Technical Goals:** 
-  * **Founder:** [[user:artem]] (project lead, systems integration)+  * AI wound assessment accuracy >85% 
 +  Treatment cycle time <10 minutes 
 +  Zero safety incidents during testing 
 +  System replicable by others following documentation
  
-**Needed:** +**Community Goals:** 
-  * **Robotics engineer** (arm design, motor control) +  * 2-3 active collaborators by Month 6 
-  * **ML engineer** (vision system, AI models) +  * Full documentation published by Month 12 
-  * **Medical advisor** (protocol validation, regulatory guidance) +  * 3+ external replications by Month 24 
-  * **Part-time contributors** (CAD, embedded systems, documentation)+  * Published validation study (blog/paper/conference)
  
-**Advisors (future):** +**Impact Goals:** 
-  * Regulatory consultant (medical device certification) +  * Demonstrate viability of autonomous wound care 
-  * Veterinary partner (pilot testing) +  * Provide accessible healthcare option for underserved areas 
-  * VC/business mentor (fundraising strategy)+  * Inspire similar open-source medical robotics projects
  
-===== Risks Mitigation =====+===== Team Collaboration =====
  
-| Risk | Probability | Mitigation | +**Current Team:** 
-|------|-------------|------------| +  * **Project Lead:** [[user:artem]] (systems integrationproject coordination)
-**Regulatory barriers** | High | Start with veterinary market, lower certification bar | +
-**No clinical partners** | Medium | NGO partnerships, field medicine applications | +
-**Insufficient funding** | Medium | Apply for grants early, bootstrap with vet revenue | +
-| **Technical failure** | Low-Medium | Incremental testing, pivot features if needed | +
-| **Team attrition** | Medium | Document everything, open-source for continuity | +
-| **Market rejection** | Low | Multiple pivots ready (vet, NGOmilitary|+
  
-===== Links & Resources =====+**Looking For:** 
 +  * **Robotics engineer** — arm design, kinematics, motor control 
 +  * **ML/AI developer** — vision system, wound classification models 
 +  * **Medical advisor** — protocol validation, safety review 
 +  * **Embedded systems** — microcontroller programming, sensor integration 
 +  * **Documentation** — technical writing, video tutorials, build guides 
 +  * **Anyone interested!** — part-time contribution welcome
  
-**Project Resources:** +**How to Contribute:** 
-  * Parent project: [[3d_printed_robotics_initiative]] +  * Join weekly robotics meetups at Brmlab 
-  * GitHub repository(to be created) +  * Check GitHub repository (to be created) 
-  * Weekly meetings: TBD (part of robotics initiative) +  * Join #robotics channel on Brmlab communication platform
-  * Communication: Brmlab Slack #robotics+
  
-**Reference Technologies:** +===== Reference Projects =====
-  * Ultrasonic debridement: SonicOne, UltraMIST, QOUSTIC +
-  * AI wound assessment: FDA-approved smartphone apps, academic research +
-  * Budget robotic arms: BCN3D Moveo, Thor, SO-ARM100 +
-  * Medical robotics: da Vinci, STAR robot+
  
-**Funding Sources:** +**Ultrasonic Wound Technology:** 
-  * EU Horizon grants (health innovation+  * SonicOne (Misonix— clinical ultrasonic debridement 
-  * Health-tech accelerators (Y Combinator, Startup Health) +  * UltraMIST — portable ultrasonic wound therapy 
-  * Angels (health-tech focus) +  * QOUSTIC (Söring— surgical ultrasonic systems
-  * VCs (post-traction)+
  
-===== Open Questions =====+**AI Wound Assessment:** 
 +  * FDA-approved smartphone wound apps 
 +  * Academic research on diabetic ulcer classification 
 +  * Thermal imaging infection detection studies
  
-  Which veterinary clinic in Prague would pilot first? +**Open-Source Robotic Arms:** 
-  * What grants should we target in Q1 2026? +  * BCN3D Moveo — [[https://github.com/BCN3D/BCN3D-Moveo]] 
-  * Should we focus on cats/dogs or larger animals first? +  * Thor — [[https://github.com/AngelLM/Thor]] 
-  * Who knows regulatory consultants for medical devices?+  * SO-ARM100 — [[https://github.com/TheRobotStudio/SO-ARM100]]
  
-----+**Medical Robotics Inspiration:** 
 +  * da Vinci Surgical System (tool changing mechanisms) 
 +  * STAR robot (autonomous suturing research)
  
-**Status:** Planning phase — seeking initial team members and grant opportunities+===== Safety & Ethics =====
  
-**Next Steps:**+**Safety Measures:** 
 +  * Force-limited actuators to prevent injury 
 +  * Patient-accessible emergency stop 
 +  * Human oversight for all treatments 
 +  * Automatic shutdown on error detection 
 +  * Sterile single-use tips for wound contact 
 + 
 +**Ethical Principles:** 
 +  * Clear communication: system is an assistant, not a replacement for physicians 
 +  * Patient consent required before any treatment 
 +  * Edge cases automatically referred to human medical staff 
 +  * Privacy: minimal data collection, no storage without consent 
 +  * Accessibility: open-source ensures anyone can build and improve 
 + 
 +**Not Intended To:** 
 +  * Replace physicians or trained medical professionals 
 +  * Handle complex medical cases 
 +  * Provide definitive medical diagnoses 
 +  * Operate without human oversight (initially) 
 + 
 +===== Current Status & Next Steps ===== 
 + 
 +**Status:** Planning phase — recruiting initial team 
 + 
 +**Immediate Next Steps:**
   - [ ] Recruit 1-2 collaborators   - [ ] Recruit 1-2 collaborators
-  - [ ] Research EU health innovation grants +  - [ ] Select base robotic arm design (BCN3D Moveo or Thor) 
-  - [ ] Design first arm prototype (CAD+  - [ ] Source initial components (motors, camera, Raspberry Pi
-  - [ ] Contact veterinary clinics for pilot interest+  - [ ] Create synthetic wound models for testing 
 +  - [ ] Set up GitHub repository 
 +  - [ ] Schedule first build session 
 + 
 +**First Meeting:** TBD — announce on Brmlab calendar 
 + 
 +===== Discussion ===== 
 + 
 +**Questions? Ideas? Want to help?** 
 +  * Weekly meetings: Part of [[3d_printed_robotics_initiative]] sessions 
 +  * Online discussion: Brmlab Slack/Discord #robotics 
 +  * GitHub: (repository link to be added) 
 + 
 +**Open Questions:** 
 +  * Which robotic arm base should we use? 
 +  * Anyone have experience with ultrasonic systems? 
 +  * Contacts at veterinary clinics for future testing? 
 +  * Tips on medical device regulations in Czech Republic/EU? 
 + 
 +===== Links & Resources ===== 
 + 
 +  * Parent project: [[3d_printed_robotics_initiative]] 
 +  * GitHub repository: (to be created) 
 +  * Build documentation: (to be created) 
 +  * Contact: [[user:artem]] 
 + 
 +----
  
 **Last Updated:** 2026-01-18 **Last Updated:** 2026-01-18
 +
 +**License:** Hardware designs and software will be released under MIT/Apache 2.0 open-source licenses
project/3dpb-med/start.1768706389.txt.gz · Last modified: 2026/01/18 03:19 by gribaart