
VLSI
Solution y

Controlled Document

VSDSP4 USER’S MANUAL

Revision History

Rev. Date Author Description
4.2 2008-03-14 PO Cleaned up version for software developers

Rev. 4.2 2008-03-14 Page i

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

c© 1998-2008 VLSI Solution Oy, Hermiankatu 8 B, Entrance G, 2nd floor, FIN-
33720 Tampere, Finland

Information furnished by VLSI Solution Oy is believed to be accurate and reliable.
However, no responsibility is assumed by VLSI Solution Oy for its use.

Specifications are subject to change without notice.

All rights reserved. No part of this manual may be reproduced, in any form or by
any means, without permission in writing from the copyright owner.

The descriptions contained herein do not imply the granting of license to make,
use, or sell equipment constructed in accordance therewith.

Rev. 4.2 2008-03-14 Page ii

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

Contents

1 Introduction 1

1.1 VS DSP Development System . 2

1.2 VSDSP4 compared to VSDSP2 . 3

2 Programming Model 4

2.1 Datapath . 5

2.2 ALU . 6

2.3 Multiplier . 6

2.4 Barrel Shifter . 6

2.5 Guard Bit Registers . 7

2.6 Flags and Mode Bits . 8

2.6.1 Saturation (S) . 8

2.6.2 Integer (I) . 8

2.6.3 Rounding (R) . 8

2.6.4 Loop (L) . 9

2.6.5 Zero (Z) . 9

2.6.6 Negative (N) . 9

2.6.7 Overflow (V) . 9

2.6.8 Extension (E) . 9

2.6.9 Carry (C) . 9

3 Data Address Generator 10

3.1 Post-modification Modes . 10

3.1.1 Linear Post-Increment/Decrement 11

3.1.2 Modulo Post-Increment/Decrement 11

3.1.3 Bit Reversal . 12

Rev. 4.2 2008-03-14 Page iii

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

4 Program control 13

4.1 PC . 13

4.2 LR0 . 13

4.3 LR1 . 14

4.4 MR0 . 14

4.5 IPR0, IPR1 . 14

4.6 LS, LE, LC . 15

5 Control Flow 16

5.1 Jumps . 16

5.2 Loops . 16

5.3 System Reset . 17

5.4 Interrupts . 17

5.4.1 Interrupt Routines . 18

5.5 Halt . 19

6 Instruction Set Reference 20

6.1 List of Instructions . 20

6.2 Instruction Descriptions . 21

6.3 Instruction Sequence Restrictions 39

6.3.1 Loop Register Restrictions 39

6.3.2 Conditional Jump Restrictions 40

7 Instruction Coding 41

7.1 General Instruction Composition 41

7.2 Opcode Field . 41

7.3 Control Instructions . 41

7.4 Arithmetic Operands . 44

Rev. 4.2 2008-03-14 Page iv

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

7.5 Move Encoding . 47

7.6 Addressing Modes . 48

7.7 Constant Loading . 50

8 Software Examples 52

8.1 Single-Precision FIR Transversal Filter 52

8.2 Double-Precision FIR Transversal Filter 53

8.3 Cascaded Biquad IIR Filter . 55

8.4 Single-Precision Matrix Multiply 56

8.5 Floating-Point Multiplication and Addition 57

Rev. 4.2 2008-03-14 Page v

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

List of Figures

1 VS DSP General Architecture. 1

2 Processor programming model . 4

3 VS DSP datapath. 5

Rev. 4.2 2008-03-14 Page vi

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 0

List of Tables

1 Jump conditions. 26

2 Operation Codes . 42

3 Control Instructions . 42

4 ALU operand encoding. 44

5 ALU result coding . 44

6 Mul operand. 45

7 Mul mode. 45

8 Single operand ALU instructions. 46

9 Registers in short move. 48

10 Registers in full move. 49

11 Load/Store coding. 49

12 Addressing Modes. 49

13 Modifications by the In register. 50

14 Addressing mode summary. 51

Rev. 4.2 2008-03-14 Page vii

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 1

1 Introduction

X memory Y memory

PROGRAM
CONTROL

PC

Program
memory

VS_DSP CORE

DATAPATH

arithmetic
registers

P register

ALU

X and Y
memory

 ADDRESS
CALCULATION

address
registers

Y
 a

dd
re

ss

A
LU

X
 a

dd
re

ss

A
LU

control
registers

decode
 logic

Peripheral
interface

PLL clock
generator

Peripheral
devices

Interrupt
arbitrator

Boot loader

B
us

 s
w

itc
h

Figure 1: VS DSP General Architecture.

VSDSP4 consists of these units:

• Datapath — an arithmetic/logic unit (ALU) and a multiplier unit.
VSDSP4 also contains a barrel shifter.

• Data Address Calculation — Two dedicated address calculation units provide
addresses for simultaneous operations on X and Y memory buses.

• Program Control — Instruction fetch, instruction address generation, and
instruction decode. The program control also includes harware loop control.

• Buses – Internal buses transfer data between different units and memories.

There are also other subsystems that are not part of the core.

• Memory — Internal RAM and ROM.

• Peripherals — Memory-mapped peripherals, such as interrupt arbiter, serial
port, GPIO, timers, DA and/or AD converters.

• External Bus Switch — Some chips have external memory buses.

• Clock Generator — A phase-locked loop (PLL) can generate core clock.

Rev. 4.2 2008-03-14 Page 1

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 1

1.1 VS DSP Development System

VS DSP is supported by a comprehensive set of software and hardware for core
evaluation and application system development. The VS DSP Evaluation Kit con-
sists of the VS DSP Software Development Toolkit (VSKIT) and the Development
Board.

VSKIT includes:

• VSA Assembler — The Assembler assembles the source code and data mod-
ules, and enables, e.g., macros and include files to be used. The Assembler
adapts to the parameter values given in Configuration Files.

• VSLINK Linker — The Linker links separately assembled modules.

• VSAR Archiver — The Archiver enables a function library to be built by
the user.

• Configuration Files — The Configuration Files describe the system. There is
a configuration file to declare the parameter values of the core, and another
file for allocating memory and mapping peripherals to the memory space.

• VSSIM / VSS Instruction Set Simulator — The Instruction Set Simula-
tor (ISS) reads lod- or coff-format object files generated by the Linker and
performs an interactive, instruction-level simulation. The ISS uses the Con-
figuration Files to create a correct model of the core and its surroundings.
The features include disassembly, breakpoints, memory and register watch,
profiling, dumping and undumping of the state (save and resume), file i/o,
and generation of test vectors to be used for hardware verification.

• VSEMU / VS3EMU Emulator User Interface — The Emulator User Inter-
face looks like the ISS, but it connects to the Development Board for program
execution instead of using the simulator engine.

• VCC C Compiler — The C Compiler reads ANSI C based source code (in-
terleaved with some optimization constructs) and produces VS DSP code.

All software included in the VSKIT is documented in a separate manual called
“VS DSP Software Tools User’s Manual”. For further information, please refer to
that manual.

Rev. 4.2 2008-03-14 Page 2

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 1

1.2 VSDSP4 compared to VSDSP2

VSDSP4 has some improvements over the VSDSP2 core.

• X and Y flags removed

• MR1 removed (interrrupts can save MR0 without changing flags)

• ASHL − Single-cycle arithmetic multi-bit shift

• EXP − Count leading bits

• SAT − Saturate 40-bit ALU register to 32 bits

• RND − Round and saturate 40-bit ALU register to 16 bits
rounding mode bit: 1 = convergent 0, 0 = round towards 0

• Modulo addressing allows address modified by

– −128 . . . + 127 when buffer size is a multiple of 64 upto 4096 words

– −64 . . . + 63 when buffer size is 1 . . . 64

Supports the old ±1 modulo mode, but not the old ±2 mode.

• Bit-reverse addressing can count backward as well as forward

• STI and LDI instructions write and read internal instruction RAM
→ IRAM does not need to be mapped to X or Y data spaces

• Instruction address bus timing now similar to XAB and YAB timing
→ Identical timing requirements for all memories

Rev. 4.2 2008-03-14 Page 3

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

2 Programming Model

The processor programming model is shown in Fig. 2. The processor contains
arithmetic, address and control registers.

A2

B2

C2

D2

A1

B1

C1

D1

P1

A0

B0

C0

D0

P0
g

n n

I0

I2

I4

I6

I1

I3

I5

I7
da da

LR0

LR1

LS

LE

LC

MR0

PC

IPR0

IPR1
pa pa

Figure 2: Processor programming model

Arithmetic registers are the 16-bit registers A0, A1, B0, B1, C0, C1, D0, D1

and the 8-bit guard bit registers A2, B2, C2, D2. The multiplier pipeline register
P0, P1 is also shown. There is no guard bit register for P because a single mul-
tiplication result always fits into 32-bit register. The arithmetic registers can be
used either as 16-bit registers mentioned above or as 40-bit registers (A, B, C,

D, P).

Address registers are the 16-bit index registers I0, I1, . . ., I7.

Control registers are the program counter PC, link registers LR0, LR1 and mode
register MR0. Loop hardware registers are LS, LE, LC, and page registers IPR0,

IPR1.

Rev. 4.2 2008-03-14 Page 4

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

2.1 Datapath

This picture shows the VSDSP datapath. The ALU
has eight 16-bit arithmetic registers A0, A1, B0, . . . ,
D0, D1 and four 8-bit guard bit registers A2, . . ., D2.
These can be combined to form 40-bit accumulators
A, B, C and D. Calculation can be performed in 40-bit
or 16-bit mode. The width depends on the operands.
If one of the operands is 40 bits wide, the operation
is performed in 40 bits, otherwise in 16 bits.

The multiplier unit is a 16× 16-bit signed/unsigned
integer/fractional saturating/unsaturating multiplier.
Multiplier inputs can be A0, A1, B0, B1, C0, C1, D0, D1.
The result goes to a 32-bit register P, which can
be used as the second ALU operand in 40-bit
arithmetic and is also used with MAC or MSU.

The 16/40-bit ALU implements the
arithmetic and logic instructions.
The ALU produces negative, carry,
overflow, zero, and extension flags.
There is also a 16/40-bit barrel
shifter.

Two internal data buses connect
the datapath registers to other
registers and memories.

ALU

Op1 Op2

A0A1

B1 B0

C1 C0

D1 D0

A2

B2

C2

D2

n / 2n+gn / 2n+g

n

n

n

n

interface to
 X bus

interface to
 Y bus

mux mux

n / 2n+g

P1 P0

saturation

NULL, ONES

m
m

fract/int shift

2m

2m

Figure 3: VS DSP datapath.

Rev. 4.2 2008-03-14 Page 5

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

2.2 ALU

The ALU can calculate either 40-bit or 16-bit operations. The width depends on
the operands; if one of the operands is 40 bits wide, the operation is 40 bits and
the result is stored to a 40-bit register. If both operands are 16 bits, the operation
and result are also 16 bits and the result is stored to a 16 bit register. Exceptions
to these rules are EXP, ASHL and RND. The result of EXP and RND is always 16-bit
wide, and Op2 of ASHL is always an 16-bit register.

The 16-bit operands are A0, A1, B0, B1, C0, C1, D0, D1. Pseudo-registers NULL

and ONES are also available and contain all zeros and all ones, respectively. NULL

and ONES are considered to be 16-bit registers for the purpose of determining the
operation width.

The 40-bit operands are A, B, C and D. P is only available as operand2. The register
A is formed by concatenating A2:A1:A0. A0 is the lsb part. For 40-bit calculations,
also 16-bit registers are available as the other operand. In this case, the register is
used as the middle part of the operand. The lsb end is padded with 16 zeros and
the sign is extended to the guard bits. For example, if register A0 is used with an
40-bit operand, the operand is xx:A0:0000 (xx means sign extension bits).

The result register of 40-bit operation must be one of A, B, C, or D. The result
register of a 16-bit operation is one of the 16-bit registers A0, . . . , D1.

2.3 Multiplier

The multiplier is a 16×16 signed/unsigned integer/fractional saturating/unsaturat-
ing multiplier.

Both inputs can be interpreted either as signed or unsigned numbers, to facilitate
multi-precision operations. The integer/fractional mode bit controls the 1-bit left
shift of the result (fractional mode). In fractional signed×signed multiplication,
saturation is optionally (in saturation mode) included so that the result of 0x8000
× 0x8000 is 0x7fffffff. The P register length is 32 bits.

The P register can be saved by executing ADD NULL, P, An. The high and low parts
will reside in the high and low parts of the target accumulator, respectively. P can
be restored by executing RESP.

2.4 Barrel Shifter

The barrel shifter can operate in both 40-bit and 16-bit mode. In 40-bit mode
it can shift 0 . . . 39 bits logically left when operand2 is positive, or up to 39 bits
arithmetically right when operand2 is negative. The result is undefined if the value
of the operand2 register is out of range −39 . . . 39.

Rev. 4.2 2008-03-14 Page 6

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

In 16-bit mode Operand2 must be in range −15 . . . 15.

The last bit shifted out is copied to the carry flag. When shifting left, the overflow
flag is set if the msb bit is changed during shifting. When overflow happens in the
saturation mode, overflow flag is set and result is saturated.

2.5 Guard Bit Registers

Guard bit registers behave as an extension of registers A1, B1, C1, and D1.

Whenever the arithmetic register A1 is written to as a 16-bit register, either from
a data bus or from ALU, the value is sign-extended to A2. Writes to B1, C1, and
D1 behave in the same way.

This does not happen when ALU operates in 40-bit mode and the result is written
to A.

If you restore 40-bit values, remember to write to the guard bit register last,
otherwise a write to A1/B1/C1/D1 will sign-extend over the desired value. This is
usually an issue only in interrupt handlers.

Rev. 4.2 2008-03-14 Page 7

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

2.6 Flags and Mode Bits

The processor mode register includes mode bits and status flags. The bits affecting
or being affected by the datapath are:

15 8

d d d d d S I R

mode bits

7 0

L d d Z N V E C

flags

Bit/flag Meaning
S saturation mode
I integer(1)/fractional(0) mult. mode
R rounding mode

L loop flag
Z zero flag
N negative flag
V overflow flag
E extension flag
C carry flag

2.6.1 Saturation (S)

If the saturation mode bit is set, the ALU and multiplier operations will saturate
the result in case of an over/underflow. The overflow flag will be set, but its
interpretation is that saturation has taken place in the ALU.

If the mode bit is clear, the ALU and multiplier will not saturate their outputs,
and the overflow flag will have its normal meaning.

2.6.2 Integer (I)

If the integer mode bit is set, the multiplier result is interpreted as an integer and
thus no re-alignment is needed.

Otherwise, the multiplier result is assumed to be a fractional number with two
leading sign bits, which will be re-aligned by a single left-shift before storing in the
P register. Normally, a zero will be fed into the LSB. In saturation to the largest
positive value, the LSB will be set to one.

2.6.3 Rounding (R)

If the rounding mode bit is set, RND will round using convergent 0 rounding, oth-
erwise RND will always round towards 0.

Rev. 4.2 2008-03-14 Page 8

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 2

2.6.4 Loop (L)

Loop flag is needed with 32-bit code space. The loop flag is set by the interrupt
mechanism to disable loop end detection. This prevents false loop end detections
when an interrupt causes the execution to transfer to zero page from another page.
Normally, there is no need for the user to set or clear the loop flag.

• Interrupt sets the loop flag.

• MR0 load can set or clear the loop flag.

• JR, RETI, J, CALL, and LOOP instructions clear the loop flag.

• JMPI does not affect the loop flag.

2.6.5 Zero (Z)

If the ALU is operating in the 40-bit mode and bits 39 . . . 0 of the ALU result are
all clear, the flag is set. If the ALU is operating in the 16-bit mode and bits 15 . . . 0
of the ALU result are all clear, the flag is set. Otherwise, the flag is cleared.

2.6.6 Negative (N)

If the ALU is operating in the 40-bit mode and bit 39 of the ALU result is set,
the flag is set. If the ALU is operating in the 16-bit mode and bit 15 of the ALU
result is set, the flag is set. Otherwise, the flag is cleared.

2.6.7 Overflow (V)

Set if an arithmetic overflow occurs in the ALU result. Otherwise cleared.

2.6.8 Extension (E)

If the ALU is operating in the 40-bit mode and bits 39 . . . 31 are all the same
(either all ones or all zeros), the flag is cleared. Otherwise, the flag is set. If the
ALU is operating in the 16-bit mode, the flag is cleared.

2.6.9 Carry (C)

If a carry is generated in an addition or a borrow is not generated in a subtraction,
the flag is set. The flag is set also in ASR, LSR and LSRC, if the LSB bit of the
operand is logical ’1’.

Otherwise, the flag is cleared.

Rev. 4.2 2008-03-14 Page 9

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 3

3 Data Address Generator

The data address generator uses index registers I0 · · · I7 to generate X and Y
data bus addresses each cycle.

Each register In has a corresponding register pair In. You get In by inverting the
LSB bit of the number of register In. For example, the pair of I3 is I2, and the
pair of I2 is I3.

Any In can be used as a X or Y data bus address. If needed, In specifies a post-
modification for In. 32-bit X addresses are formed by concatenating In and In,
but these are only useful with chips that have external data buses.

3.1 Post-modification Modes

There are two post modification modes specified in the instruction: post-modification
by −7 . . . + 7 or post-modification by In.

• ldx (i0),a0 – load a0, no post-modification

• ldx (i0)+6,a0 – load a0, post-modification by +6

• ldx (i0)-7,a0 – load a0, post-modification by -7

• ldx (i0)*,a0 – load a0, post-modification by I0, i.e. I1

The modification by In (i.e. using *) uses the most significant bits of In to specify
the post modification mode: linear post-modification, modulo post-modification
and bit reverse.

In(15:13) Mask Modification

000 0x0000 In = (In+m) (m positive)
001 0x2000 In = [(In+m(12 : 6)) % (m(5 : 0) + 1)]
01x 0x4000 In = [(In+m(13 : 6)) % (m(5 : 0)× 64 + 64)]
100 0x8000 In = [(In+1) % (m + 1)]
101 0xa000 In = [(In−1) % (m + 1)]
110 0xc000 In = (In+m) bit reverse
111 0xe000 In = (In+m) (m negative)

When modulo addressing is used, modulo logic keeps the address within a circular
buffer. The buffer length does not need to be a power of two, but the starting
address of the buffer must be aligned to the nearest larger or equal power of two.

The bit-reverse modification is useful for FFT and DFT implementations.

Rev. 4.2 2008-03-14 Page 10

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 3

3.1.1 Linear Post-Increment/Decrement

Linear post-modification can be an immediate -7 · · · +7 modification or modifi-
cation by In. In the case of a negative modifier, In contains the value in two’s
complement format.

• ldx (i0)+5,a0 – load a0, post-modification by +5

• ldc -10,i1

ldx (i0)*,null – no load, post-modification by -10

• ldc 8191,i0

ldy (i1)*,a0 – load a0, post-modification by 8191

3.1.2 Modulo Post-Increment/Decrement

In modulo modification the modified address is kept inside the circular buffer.
This requires that the buffer start address is aligned to a power-of-two boundary
according to the buffer size.

There are four different modulo modes. The most used ones are the +1 and -1
updates (masks 0x8000 and 0xa000). The lower bits of In give the size of the
modulo buffer minus one.

• ldc 0x8000+BUFSIZE-1,i1

ldx (i0)*,null – no load, post-modification by +1 modulo BUFSIZE

• ldc 0xa000+BUFSIZE-1,i1

ldx (i0)*,null – no load, post-modification by -1 modulo BUFSIZE

The other modulo modes can modify the address by larger steps than 1, but they
have restrictions on what the buffer size can be. If the buffer size is 1..64 the
modification can be -64..63. If the buffer size is a multiple of 64 (from 64 to 4096),
the modification can be -128..127.

• ldc 0x2000+((STEP&0x3f)<<6)+((BUFSIZE-1)&0x3f),i1

ldx (i0)*,null – post-modification by STEP modulo BUFSIZE

• ldc 0x4000+((STEP&0x7f)<<6)+((BUFSIZE/64-1)&0x3f),i1

ldx (i0)*,null – post-modification by STEP modulo BUFSIZE

Rev. 4.2 2008-03-14 Page 11

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 3

3.1.3 Bit Reversal

In bit reversal addressing, calculated addresses are kept within a buffer length 2k

and when calculating the updated address, carry is propagated towards the LSB.
The lower boundary of the buffer is a multiple of 2k. The boundary is decided by
finding the highest 1-bit in In(12 : 0).

3 MSBs of In should contain 110 to select bit reversal addressing. LSBs of In
should contain the reversed adder value, normally 2k−1.

In = In + In[12 · · · 0] (propagate carry towards LSB)

Example (64-point (k = 6) FFT in buffer 0x3000 · · · 0x303f), getting the next
entry after 0x3030:

In =

15 8

0 0 1 1 0 0 0 0

7 0

0 0 1 1 0 0 0 0 0x3030

In = 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0xc020

updated In = 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0x3008

The previous example shows the normal usage, although other values than power
of two are possible. The next example shows how to go backwards instead of
forwards by setting In(12 : 0) to 2k − 1 instead of 2k−1.

Example (64-point (k = 6) FFT in buffer 0x3000 · · · 0x303f), getting the previous
entry before 0x3030:

In =

15 8

0 0 1 1 0 0 0 0

7 0

0 0 1 1 0 0 0 0 0x3030

In = 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0xc03f

updated In = 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0x3010

Rev. 4.2 2008-03-14 Page 12

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 4

4 Program control

Program control unit (pcu) performs instruction fetch and decode, control flow
changes and interrupt fetching. In addition to the program counter PC, program
control unit has two link registers which are used for indirect jumps, LR0 and LR1.

Mode register MR0 holds the mode and flag bits. Loop control has three registers,
LS, LE and LC. Program counter is not directly accessible.

Instruction Address Generator contains all pcu registers. Instruction Address Gen-
erator drives Instruction Address Bus from PC, LR0, LR1, interrupt address or from
instruction jump address.

To achieve 32-bit instruction address space (large-code), two page registers are
used. IPR0 holds the uppermost part of the instruction address. IPR0 and PC

together determine the instruction address. IPR0 is copied to IPR1 during inter-
rupts.

Interrupt Controller processes interrupts. It implements the interrupt state ma-
chine. Interrupt Controller receives external interrupt and drives interrupt fetch
signal to Instruction Address Generator. Interrupt Controller makes sure that
previous interrupt has been processed before new interrupt request is presented to
Instruction Address Generator.

4.1 PC

PC is the program counter. It is not directly accessible by the programmer. PC is
loaded with the fetch address+1 value on all cycles except when new loop round
starts. In this case PC is loaded with LS. PC is kept at the old value if the instruction
data and address buses are used by LDI or STI.

In interrupts, PC is copied to LR1.

In instruction fetches, instruction address bus (IAB) is driven either from PC, LR0,
LR1, decoded instruction jump target address, reset vector address, interrupt vec-
tor address, or calculated address for LDI or STI.

4.2 LR0

LR0 is used in indirect jumps. JRcc causes instruction to be fetched from LR0 ad-
dress instead of PC address, if condition cc is true. LR0 is used to save the return
address for subroutine calls, so executing JRcc at the end of the subroutine returns
to the caller. If nested subroutines are needed, the previous LR0 must be saved
and restored by the caller.

Rev. 4.2 2008-03-14 Page 13

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 4

4.3 LR1

LR1 is used in interrupt returns. RETI causes instruction to be fetched from LR1 ad-
dress instead of PC address. PC is copied to LR1 on interrupts.

If nested interrupts are needed, LR1 must be saved and restored by the interrupt
service routine. See section 5.4.1 for the save and restore routines.

4.4 MR0

MR0 is the processor mode / status flag register.

15 8

d d d d d S I R

mode bits

7 0

L d d Z N V E C

flags

Bit/flag Meaning
S saturation mode
I integer(1)/fractional(0) mult. mode
R rounding mode

L loop flag
Z zero flag
N negative flag
V overflow flag
E extension flag
C carry flag

In the end of an interrupt, MR0 is restored from the stack. Thus explicit moves
override the evaluation of flags.

The mode bits and flags are described in more detail in section 2.6.

4.5 IPR0, IPR1

IPR0 is the instruction page register and is used to implement 32-bit code address
space. It holds the upper 16 bits of instruction address. IPR0 can be changed by
JRcc or JMPI instruction.

In interrupts IPR0 is copied to IPR1 at interrupt cycle #2.

Rev. 4.2 2008-03-14 Page 14

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 4

4.6 LS, LE, LC

LS holds the loop start address. LE holds the loop end address. LC holds the
loop count.

LOOP instruction copies instruction fetch address to LS, loads LE with loop end ad-
dress specified in the LOOP instruction, and copies LC from the specified register.

When instruction fetch occurs from LE address and the L-flag is not set, LC is
tested. If LC 6= 0, it is decremented by one, new loop round starts by copying LS

to PC. If LC = 0, fetch continues from the next address.

LE is initiated with all ones in system reset.

Rev. 4.2 2008-03-14 Page 15

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 5

5 Control Flow

The control flow behaviour follows the three-stage pipelining of the processor oper-
ation. The change-of-flow instructions are all delayed, with one delay slot following
the instruction. There can not be another change-of-flow instruction in the delay
slot. In this sense, also LOOP is considered as a change-of-flow instruction, in
addition to J, Jcc, JRcc, CALLcc and RETI.

The JMPI instruction is also a change-of-flow instruction and has the same kind
of timing behaviour as other change-of-flow instructions, but the instruction in
the delay slot is canceled (executed as NOP), and can therefore be a change-of-flow
instruction. This feature is mostly used in the interrupt vector table.

5.1 Jumps

Jump conditions are taken from the flags in MR0. The flags that are part of the
condition must be unaltered in the preceding instruction. Other flags can be
modified.

5.2 Loops

The loop mechanism has three registers which are loop start register LS, loop end
register LE and loop count register LC.

Change-of-flow instructions can not be at loop end address or immediately before
that.

LOOP instruction starts a hardware loop. LOOP instruction has one delay slot, i.e.,
loop start address is LOOP+2. This results from the fact that instruction at LOOP+1
(delay slot) is fetched before loop registers are updated by LOOP instruction. Loop
can also be initiated by setting LS, LE and LC to appropriate values.

When the instruction fetch address equals LE, the value of LC is checked. If LC is
not equal to zero, it is decremented by 1 and PC is loaded with LS. If LC is equal
to zero, executing continues linearly from the next instruction.

Rev. 4.2 2008-03-14 Page 16

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 5

5.3 System Reset

System reset forces the processor to a known reset state. After reset is released,
the processor starts executing instructions from reset address onwards.

All registers except LE and PC are zeroed on reset. LE is set to all ones. PC is set
to reset vector (normally 0x4000).

5.4 Interrupts

Interrupts are vectored using a jump table. The external interrupt peripheral sup-
plies an interrupt vector to core. The vector is an address in the range 0x20. . .0x3f.
These addresses must hold a jump table with JMPI instructions which jump to the
start of the appropriate interrupt routine.

In interrupts LR1 is used to save the return address. When main program is
interrupted, return address is automatically copied to LR1. Interrupts normally
end with a RETI (jump to LR1) or a JRcc(jump to LR0).

When generating an interrupt request, the interrupt peripheral automatically dis-
ables further interrupts by increasing its interrupt disable count register. If nested
interrupts are required, the interrupt handler must save LR1 before enabling further
interrupts.

Note that if you call C-compiled routines from the interrupt handler, you must
also save P and the guard bit registers.

Rev. 4.2 2008-03-14 Page 17

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 5

5.4.1 Interrupt Routines

A typical interrupt jump table looks like the following:

.org 0x20

JMPI int_routine0,(SP)+1

JMPI int_routine1,(SP)+1

JMPI int_routine2,(SP)+1

...

Here, the JMPI instructions also increases the stack pointer.

The start of the interrupt handler must save the processor state before enabling
interrupts in the interrupt controller. The end of the handler restores the processor
state. Depending whether only 16-bit or both 16- and 32-bit code model will be
used in the program, a different kind of a saving and restoring is used.

The following is a typical 16-bit (small-code space) interrupt routine:

_int_routine0:

STX mr0,(i6) ; STY i7,(i6)+1

STX lr1,(i6) ; STY lr0,(i6)

...

(actual interrupt functionality)

...

LDC INT_GLOB_EN,i7

LDX (i6),lr1 ; LDY (i6)-1,lr0

LDX (i6),mr0

RETI

STX i7,(i7) ; LDY (i6)-1,i7

When an interrupt is taken, the interrupt controller automatically disables all
interrupts. Writing to the memory-mapped register INT GLOB EN enables the
interrupts.

The interrupts must be disabled during the RETI instruction execution, and they
will therefore be enabled in its delay slot. The RETI will also clear the L-flag, and
the restoring of MR0 must therefore come before it, if the flag is not cleared by the
user.

Rev. 4.2 2008-03-14 Page 18

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 5

The following is a typical 32-bit (large-code) interrupt routine.

STX i7,(i6)+1 ; STY lr0,(i6)

STX ipr1,(i6)+1 ; STY lr1,(i6)

STX mr0,(i6)

...

(actual interrupt functionality)

...

LDX (i6)-1,mr0

LDC INT_GLOB_EN,i7

STY i7,(i7)

LDX (i6)-1,i7 ; LDY (i6),lr0

JR (i7) // clears the loop flag

LDX (i6)-1,i7 ; LDY (i6),lr0

I7 and LR0 must be restored in the delay slot of the JR instruction, because JR
uses them both.

5.5 Halt

In HALT, the processor waits until an interrupt occurs. The execution pipeline is
stopped.

When an interrupt occurs, the processor executes 3 instructions after the HALT
instruction before executing the first interrupt instruction.

If the interrupt state machine is not in the idle state when HALT goes to execution,
HALT instruction has no effect and is executed like a NOP.

Rev. 4.2 2008-03-14 Page 19

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

6 Instruction Set Reference

6.1 List of Instructions

The following table lists all basic and optional instructions. The operands of each
instruction, mode bits affecting the operation and the flags affected are also shown.

Mnemonic meaning operands result S I R L Z N V E C
ABS absolute value Areg Areg u – – – x x x x x
ADD add 2×Areg Areg u – – – x x x x x
ADDC add with carry 2×Areg,c Areg u – – – x x x x x,u
AND logical AND 2×Areg Areg – – – – x x 0 x 0
ASHL n-b arithmetic shift 2×Areg Areg u – – – x x x x x
ASR 1-b arithmetic right shift Areg Areg – – – – x 0 0 x x
CALLcc conditional call addr,cc PC, LR0 – – – 0 u u u u u
EXP count leading bits Areg Areg – – – – x 0 0 0 0
HALT wait for an interrupt – – – – – – – – – – –
Jcc conditional jump addr,cc PC – – – 0 u u u u u
JMPI jump, ignore delay slot addr,In PC, In – – – – – – – – –
JRcc conditional jump with LR0 LR0, cc, In PC – – – 0 u u u u u
LDC load constant imm reg – – – – – – – – –
LDX load on X bus In, In reg – – – – – – – – –
LDY load on Y bus In, In reg – – – – – – – – –
LDI load on I bus In, In Areg – – – – – – – – –
LOOP start loop reg, addr Lregs – – – 0 – – – – –
LSL 1-b logical left shift Areg Areg – – – – x x x x x
LSLC LSL with carry Areg,c Areg – – – – x x x x x
LSR 1-b logical right shift Areg Areg – – – – x 0 0 x x
LSRC LSR with carry Areg,c Areg – – – – x x 0 x x
MAC multiply-accumulate 2×Areg Areg,P u u – – x x x x x
MSU multiply-subtract 2×Areg Areg,P u u – – x x x x x
MUL multiply 2×Areg P u u – – – – – – –
MVX register move reg reg – – – – – – – – –
MVY register move reg reg – – – – – – – – –
NOP no operation – – – – – – – – – – –
NOT logical NOT Areg Areg – – – – x x 0 x 0
OR logical OR 2×Areg Areg – – – – x x 0 x 0
RESP restore P 2×Areg P – – – – – – – – –
RETI jump with LR1 LR1, In PC – – – 0 – – – – –
RND round to 16 bits Areg Areg – – u – x x x 0 0
SAT saturate to 32 bits Areg Areg – – – – x x x 0 0
STX store on X bus In, In, reg mem – – – – – – – – –
STY store on Y bus In, In, reg mem – – – – – – – – –
STI store on I bus In, In,

Areg
mem – – – – – – – – –

SUB subtract 2×Areg Areg u – – – x x x x x
SUBC SUB with carry 2×Areg,c Areg u – – – x x x x x,u
XOR logical XOR 2×Areg Areg – – – – x x 0 x 0

Operands and result: reg = register, In = index, In = modifier, addr = address,
cc = condition code, c = carry in, imm = immediate data, Lregs = loop registers,

P = multiplier result, PC = program counter, mem = memory location
Mode bits and flags: x = sets flag, u = uses bit, 0 = sets flag to 0,

Rev. 4.2 2008-03-14 Page 20

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

6.2 Instruction Descriptions

The instruction description includes the mnemonic and a one line description
of the operation, the syntax and mathematical expression of the operation,
comments on the use and other specific information, and finally the coding
of the instruction. The operand fields or other further refinements are given in
accompanying tables.

Several operations can be executed in parallel when they are using different fields
of the instruction word, e.g., ALU operations and two parallel moves with indirect
addressing are possible, see instruction composition in chapter 7. In assembler
the parallel operations are separated by a semicolon. The following lists the main
rules.

One instruction can contain:

• Any single operation
LDC 1234,i0

J label

• ALU operation and any load or store
sub a0,a1,b0 ; ldx (i1)-4,i0

• ALU operation and any register move
add a1,null,a0 ; mv a2,a1

• Two register moves (there are some register bank restrictions)
mv a0,i0 ; mv a1,i1

• One X and one Y load or store
ldx (i6)-1,a0 ; ldy (i6),a1

ldx (i0)+7,a0 ; sty a0,(i2)+1

• ALU operation and one restricted X and one restricted Y load or store
mac a0,a1,b ; ldx (i0)*,a0 ; ldy (i2)*,a1

In restricted (short) load/store one can only use the * modification or no
modification, and the data register must be an ALU register.

Rev. 4.2 2008-03-14 Page 21

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

ABS Absolute value

ABS Op2, An ; |Op2| → An

Flags: Z,N,V,E,C.

The operand is conditionally negated (two’s complement operation) and placed in
the target register. The coding of Op2 is given in Table 4 (ALU operand), and
the result coding in Table 5. The absolute value of the minimum integer (fraction
-1.0) is the maximum integer in the saturation mode.

Coding:

31 28

1 1 1 1

27 24

0 0 0 0

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

ADD Addition of two operands

ADD Op1, Op2, An ; Op1 + Op2 → An

Flags: Z,N,V,E,C.

The operand coding is shown in Table 4 (ALU operand), and the result coding in
Table 5. LSL is constructed with ADD Op1, Op1, An .

Coding:

31 28

0 1 0 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

ADDC Addition of two operands with carry

ADDC Op1, Op2, An ; Op1 + Op2 + C → An

Flags: Z,N,V,E,C.

The operand coding is shown in Table 4 (ALU operand), and the result coding in
Table 5. LSLC is constructed with ADDC Op1, Op1, An .

Coding:

31 28

1 0 0 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 22

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

AND Bitwise AND of two operands

AND Op1, Op2, An ; for each i : Op1[i] ·Op2[i] → An [i]
Flags: Z,N,V=0,E,C=0.

The operand coding is found in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 0 1 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

ASHL Arithmetic multi-bit shift

ASHL Op1, Op2, An ; if Op2 > 0 : Op1 << Op2 → An : else Op1 >> |Op2| → An

Flags: Z,N,V,E,C.

When Op2 is positive then the source is shifted left Op2 bits. Bits shifted out
of position 40 are lost, but for the last bit is copied to the carry flag. Zeros are
supplied to the vacated positions on the right.

When Op2 is negative then the source is shifted right abs(Op2) bits. Bits shifted
out of position 0 are lost, but the last bit is copied to the carry flag. Copies of the
MSB are supplied to the vacated positions on the left (arithmetic shift).

If a zero shift count is specified, the carry bit is cleared. Overflow flag is set if
MSB is changed any time during the shift operation. This can only happen when
shifting left.

Note: if the number of shifts exceeds the range of −40 . . . 40 (or −16 . . . 16 for
16-bit source/result) then the result is undefined.
Note2: Op2 is always 16-bit register.

The operand coding is found in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 0 1 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 23

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

ASR Arithmetic shift right

ASR Op2, An ; for each i > 0 : Op2[i] → An [i− 1], Op2[msb] → An [msb]
Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is discarded, and MSB
of the source registers is fed into the MSB bit of the result.

Coding:

31 28

1 1 1 1

27 24

0 0 0 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

EXP Count leading bits

EXP Op2, An

Flags: Z,N=0,V=0,E=0,C=0.

Count leading zeros or ones according to MSB of the source. The result is a
unsigned integer in whose range of possible values are from 0 to 2n + g. If Op2 is
0 then result is 0.

Note: Result is always written to 16-bit register.
Note2: This instruction can be used in conjunction with ASHL instruction, to spec-
ify the shift amount needed for normalization.

The operand coding is found in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 1 1 1

27 24

0 1 0 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

CALLcc Conditional delayed jump and save return address

CALL addr; PC→ LR0, if cond : addr → PC

Flags: L=0.

Identical to normal jump instruction, but PC is saved to LR0. This instruction
replaces the sequence J addr, LDC @+1,LR0 which is used in subroutine calls.

Rev. 4.2 2008-03-14 Page 24

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

Note the one delay slot associated to this instruction. The address which is saved
to LR0 is the CALL instruction address + 2. The instruction in the delay slot is
always executed regardless of the condition.

Coding:

31 28

0 0 1 0

27 24

1 0 0 1

2322

-

21 6

absolute address

5 0

condition

HALT Halt the processor and wait for an interrupt

HALT
Flags: no change.

The processor is halted to a low-power state. Normal execution is resumed when
an interrupt occurs.

Coding:

31 28

0 0 1 0

27 24

1 1 0 1

23 0

-

Jcc Conditional delayed jump to absolute address

Jcc addr; if cond : addr → PC, else : PC + 1 → PC

Flags: L=0.

Flags and their combinations can be used as jump conditions, as shown in Table 1
(Jump conditions). The instruction immediately before the Jcc must not change
the flags that are used in the jump condition. Other flags can be changed. Note
the one delay slot associated to this instruction.

Coding:

31 28

0 0 1 0

27 24

1 0 0 0

2322

-

21 6

absolute address

5 0

condition

Rev. 4.2 2008-03-14 Page 25

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

Table 1: Jump conditions.

Binary code Abbrev Name definition

000000 always
000001 CS carry set C = 1
000010 ES extension set E = 1
000011 VS overflow V = 1
000100 NS negative N = 1
000101 ZS zero Z = 1
001000 LT less than zero N

⊕
(V · S) = 1

001001 LE less than or equal to zero N
⊕

(V · S) + Z = 1
010001 CC carry clear C = 0
010010 EC extension clear E = 0
010011 VC not overflow V = 0
010100 NC not negative N = 0
010101 ZC not zero Z = 0
011000 GE greater than or equal to zero N

⊕
(V · S) = 0

011001 GT greater than zero N
⊕

(V · S) + Z = 0

JMPI Jump, ignore delay slot, increment index register

JMPI addr, (Op1) + n; addr → PC, Op1 + n → Op1, 0 → IPR0

Flags: no change.

Identical to normal jump instruction, but ignores the instruction in the delay slot
(a NOP is executed instead) and jumps to zero page. Also, the index register
specified is optionally modified (identical to LDX (Op1)+n,NULL).

This instruction is used in interrupt vector jump table. Do not use this instruction
in normal code if interrupts are enabled.

Coding:

31 28

0 0 1 0

27 24

1 0 1 0

2322

-

21 6

absolute address

55

-

4 3

m m

2 0

r r r

rrr = address register, dd = don’t care,
mm = address mode (00 = no update, 01 = +1, 11 = -1).

Rev. 4.2 2008-03-14 Page 26

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

JRcc Conditional delayed jump to the address in link register 0

JRcc; if cond : LR0→ PC

Flags: L=0.

JRcc Conditional delayed jump to the address in link register 0

JRcc (Op1); if cond : LR0→ PC, Op1 → IPR0

Flags: L=0.

The JRcc instruction can be used for returns from subroutines, as well as for other
jumps with run-time calculated addresses. The return addresses are typically
loaded by an LDC instruction. Flags and their combinations can be used as jump
conditions, as shown in Table 1 (Jump conditions). The instruction immediately
before the JRcc must not change the flags that are used in the jump condition.
Other flags can be changed. Unconditional return can be done with the “always”
condition. Note the one delay slot associated to this instruction.

Coding:

31 28

0 0 1 0

27 24

0 0 0 0

2323

0

22 6

-

5 0

condition

31 28

0 0 1 0

27 24

0 0 0 0

2323

1

22 9

-

8 6

r r r

5 0

condition

cccccc = condition, rrr = Op1 (I0. . .I7)

LDC Load constant to a register

LDC constant, Op1; constant → Op1
Flags: no change.

The register (Op1) coding is shown in Table 10 (Target full move). The assembler
understands numbers in different bases (e.g., hexadecimal, decimal, binary), while
the immediate is finally coded in binary format. A single constant load can be
done in an instruction, and no parallel arithmetic can be used. The constant is
LSB-aligned and sign extended if needed.

Coding:

31 29

0 0 0

28 22

-

21 6

constant

5 0

R R R R R R

RRRRRR = Op1

Rev. 4.2 2008-03-14 Page 27

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

LDX Load register from X-memory

LDX (Op1), Op2; X[Op1] → Op2, update Op1
Flags: no change.

LDY Load register from Y-memory

LDY (Op1), Op2; Y [Op1] → Op2, update Op1
Flags: no change.

Coding (double full moves):

31 28

0 0 1 1

27 14

X full move

13 0

Y full move

Coding (parallel full move):

31 28

o o o o

27 24

d d d d

23 20

d d d d

19 17

d d d

16 12

0 b 0 F F

11 8

F F F F

7 4

F F F F

3 0

F F F F

oooo = opcode allowing parallel moves, dddd = don’t care
b = bus X/Y (0/1), FFFFF = full move bits of X/Y

Coding (parallel short moves):

31 28

o o o o

27 24

d d d d

23 20

d d d d

19 17

d d d

16 12

1 x x x x

11 8

x x x x

7 4

y y y y

3 0

y y y y

xxxx = short move bits of X, yyyy = short move bits of Y.

LDX Load register from X memory with long address

LDX (Op2 : Op3), Op1; X[Op2 : Op3] → Op1
Flags: no change.

STX Store register in X memory with long address

STX Op1, (Op2 : Op3); Op1 → X[Op2 : Op3]
Flags: no change.

Load or store a register from or to X memory. This instruction uses two index
registers to generate a long (2×dataaddress) memory address. When Op2 is In,
Op3 is the corresponding modifier register In.

Coding (parallel move):

Rev. 4.2 2008-03-14 Page 28

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

31 17

arithmetic opcode

16 10

0 0 1 0 1 0 0

9 6

s r r r

5 0

R R R R R R

RRRRRR = Op1, rrr = Op2, s = 1-store/0-load

LDI Load register from I memory

LDI (Op2), Op1; I[Op2] → Op1, update Op2
Flags: no change.

STI Store register to I memory

STI Op1, (Op2); Op1 → I[Op2], update Op2
Flags: no change.

Transfer data between I memory and registers. During the access the instruction
data and address buses are not available for instruction fetches. The instruction
is forced to NOP, PC update and LE compare are supressed. Op1 is A, B, C, or D,
Op2 is In. The next instruction can not be a change-of-flow instruction.

Coding (parallel move):
31 17

arithmetic opcode

16 10

0 0 1 0 1 0 1

9 6

s r r r

5 0

p p p p R R

RR = Op1, rrr = Op2, s = 1-store/0-load, pppp = post-modification -7..7 or In

Rev. 4.2 2008-03-14 Page 29

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

LOOP Start a hardware loop, delayed

LOOP Op1, addr; Op1 → LC, addr → LE, PC + 2 → LS

Flags: L=0.

This instruction starts a hardware loop. The instruction carries a register number,
and an absolute loop end address which can be calculated by the assembler. The
LE indicates the address of the last instruction within the loop body. The loop
start is implicitly the second instruction from the LOOP instruction. See section
5.2 for details. Note the one delay slot associated to this instruction.

Coding:

31 28

0 0 1 0

2726

0 1

25 22

-

21 6

absolute address

55

d

4 0

r r r r r

rrrrr = Op1 (loop count), nn...nn = absolute loop end address.
d = don’t care bit.

Rev. 4.2 2008-03-14 Page 30

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

LSL1 Logical shift left

LSL Op2, An ; for each i < bits− 1 : Op2[i] → An [i + 1], 0 → An [0]
Flags: Z,N,V,E,C=op2(bits-1).

The instruction shifts left by one position. This instruction is implemented in
hardware as ADD Op2, Op2, An. Note! P is not available as an operand for this
instruction.

Coding:

31 28

0 1 0 0

27 24

r r r r

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

LSLC2 Logical shift left with carry

LSLC Op2, An ; for each i < bits− 1 : Op2[i] → An [i + 1], C → An [0]
Flags: Z,N,V,E,C=op2(bits-1).

The instruction shifts left by one position. This instruction is implemented in
hardware as ADDC Op2, Op2, An. Note! P is not available as an operand for this
instruction.

Coding:

31 28

1 0 0 0

27 24

r r r r

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

LSR Logical shift right

LSR Op2, An ; for each i > 0 : Op2[i] → An [i− 1], 0 → An [msb]
Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is discarded, and zero
is fed into the MSB bit. The operand (Op2) is encoded as described in Table 4
(ALU operand), and the result coding in Table 5.

Coding:

31 28

1 1 1 1

27 24

0 0 1 0

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

1This instruction is implemented as a single instruction software macro.

Rev. 4.2 2008-03-14 Page 31

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

LSRC Logical shift right with carry

LSRC Op2, An ; for each i > 0 : Op2[i] → An [i− 1], C → An [msb]
Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is fed to carry, and carry
is fed into the MSB bit. The operand (Op2) is encoded as described in Table 4
(ALU operand), and the result coding in Table 5.

Coding:

31 28

1 1 1 1

27 24

0 0 1 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

MAC Multiply-accumulate

MAC Op1, Op2, An ; An + P→ An , Op1×Op2 → P

Flags: Z,N,V,E,C.

The instruction performs one multiplication and adds the result of the previous
multiplication (P) to a register. The multiplication operands are considered signed
or unsigned (see MUL), multiplication mode and possible saturation are controlled
by the appropriate mode bits.

Coding:

31 28

0 1 0 1

27 24

r r r m

23 20

m R R R

19 17

A A A

16 0

parallel move

rrr = Op1, RRR = Op2, AAA = target register, mm = data format.

MSU Multiply-subtract

MSU Op1, Op2, An ; An − P→ An , Op1×Op2 → P

Flags: Z,N,V,E,C.

The instruction performs one multiplication and subtracts the result of the previ-
ous multiplication (P) from a register. The multiplication operands are considered
signed or unsigned (see MUL).

Coding:

31 28

0 1 1 1

27 24

r r r m

23 20

m R R R

19 17

A A A

16 0

parallel move

rrr = Op1, RRR = Op2, AAA = target register, mm = data format.

Rev. 4.2 2008-03-14 Page 32

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

MUL Multiply

MUL Op1, Op2; Op1×Op2 → P

Flags: no change.

Performs one multiplication. The operands can be signed or unsigned, multipli-
cation mode and possible saturation are controlled by the appropriate mode bits.
There are different mnemonics for different format operands. The data format
can be Op1 signed/Op2 signed (MULSS), Op1 unsigned/Op2 signed (MULUS), Op1
signed/Op2 unsigned (MULSU) or Op1 unsigned/Op2 unsigned (MULUU). The format
SS is the default, and MULSS can thus be written as plain MUL.

Coding:

31 28

1 1 1 1

27 24

1 1 1 m

23 20

m R R R

19 17

r r r

16 0

parallel move

rrr = op1, RRR = op2, mm = data format.

MVX/MVY Register-to-register move

MV X Op1, Op2; Op1 → Op2
Flags: no change.

Moves a register to another register using X or Y data bus. In parallel MVX, any
register can be used as a source or target. The source is read on X bus, switched
to Y bus and written from Y bus.

In double MVX/MVY, two moves can be performed with a single instruction.
The source and destination registers must be from different execution units (ALU,
DAG, PCU).

Coding (parallel move):

31 17

arithmetic opcode

16 12

0 0 1 0 0

11 6

s s s s s s

5 0

d d d d d d

Coding (double move):

31 28

0 0 1 0

27 24

1 0 1 1

23 18

S S S S S S

17 12

D D D D D D

11 6

s s s s s s

5 0

d d d d d d

n = reserved, ssssss = Y source, dddddd = Y tar get,
SSSSSS = X source , DDDDDD = X target.

Rev. 4.2 2008-03-14 Page 33

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

NOP No operation

NOP; no effect
Flags: no change.

A parallel move NOP is a load operation to NOP register. A total NOP is LDC to NOP.

Coding:

31 28

1 1 1 1

27 24

0 1 0 0

23 20

d d d d

19 17

d d d

16 0

parallel move

ddd = don’t care.

NOT3 Bitwise logic NOT operation

NOT Op2, An ; for each i : Op2[i] → An [i]
Flags: Z,N,V=0,E,C=0.

The operand (Op2) coding is shown in Table 4 (ALU operand), the target can be
one of the registers. In hardware this is equal to an XOR with register ONES.

Coding:

31 28

1 1 0 1

27 24

1 0 0 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

OR Bitwise logic OR operation

OR Op1, Op2, An ; for each i : Op1[i] + Op2[i] → An [i]
Flags: Z,N,V=0,E,C=0.

The operands are encoded as described in Table 4 (ALU operand), and the result
coding in Table 5. The target is one of the registers.

Coding:

31 28

1 1 0 0

27 24

r r r r

23 20

R R R R

19 17

A A A

16 0

parallel move

rrrr = Op1, RRRR = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 34

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

RESP Restore P register

RESP Op1, Op2; Op1 → P0 Op2 → P1
Flags: no change.

This instruction restores the P contents from two arithmetic registers. The saving
of the P shall be done as described in section 2.3. The operands are encoded as
multiplication operands.

Coding:

31 28

0 0 1 0

27 24

0 0 1 0

23 20

d R R R

19 16

r r r d

15 12

d d d d

11 8

d d d d

7 4

d d d d

3 0

d d d d

rrr = Op1, RRR = Op2, ddd = don’t care bits.

RETI Delayed return from interrupt

RETI; LR1→ PC

Flags: L=0.

RETI Delayed return from interrupt

RETI (Op1); LR1→ PC, Op1 → IPR0

Flags: L=0.

The RETI instruction is used for returns from interrupts, similarly as JRcc is used
for returns from subroutines. For description of interrupt mechanism and the
correct use of RETI, see chapter 5.

Coding:

31 28

0 0 1 0

27 24

0 0 0 1

2323

0

22 0

-

31 28

0 0 1 0

27 24

0 0 0 1

2323

1

22 9

-

8 6

r r r

5 0

-

rrr = Op1 (I0. . .I7)

Rev. 4.2 2008-03-14 Page 35

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

RND Round and saturate a 40-bit ALU register to 32 bits

RND Op2, An

Flags: Z,N,V,E=0,C=0.

Round long ALU register to top 24 bits. If mode bit R is set, uses convergent
0 rounding (round exact x.5 values towards even numbers), otherwise round to-
wards 0. After the number is rounded, it is saturated to the lowest 16 bits of the
intermediary 24-bit result.

The result is a signed integer.

Note: Result is always written to 16-bit register.

The operand coding is found in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 1 1 1

27 24

0 1 1 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

SAT Saturate 40-bit ALU register to 32 bits

SAT Op2, An

Flags: Z,N,V,E=0,C=0.

Saturate 40-bit register to 32-bit range. This is different from saturation mode set
in MR0 register, which saturates ALU results to 40-bit range.

The overflow flag is set if Op2 was out of 32-bit range and saturation was made.

Note: Saturation mode bit in MR0 register does not affect this instruction.

The operand coding is shown in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 1 1 1

27 24

0 1 1 0

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 36

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

STX Store a register in X memory

STX Op1, (Op2); Op1 → X[Op2], update Op2
Flags: no change.

See LDX for the general load/store capability description and the encoding of the
move fields.

STY Store a register in Y memory

STY Op1, (Op2); Op1 → Y [Op2], update Op2
Flags: no change.

See LDX for the general load/store capability description and the encoding of the
move fields.

SUB Subtraction of two operands

SUB Op1, Op2, An ; Op1−Op2 → An

Flags: Z,N,V,E,C.

The operand coding is shown in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

0 1 1 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 37

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

SUBC Subtraction of two operands with carry

SUBC Op1, Op2, An ; Op1−Op2− C → An

Flags: Z,N,V,E,C.

The operand coding is shown in Table 4 (ALU operand), and the result coding in
Table 5.

Coding:

31 28

1 0 0 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

XOR Bitwise logic XOR operation

XOR Op1, Op2, An ; for each i : Op1[i]
⊕

Op2[i] → An [i]
Flags: Z,N,V=0,E,C=0.

The operand coding of Op1 and Op2 is shown in Table 4 (ALU operand), and the
result coding in Table 5. XOR has also been used to implement NOT.

Coding:

31 28

1 1 0 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 4.2 2008-03-14 Page 38

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

6.3 Instruction Sequence Restrictions

There are certain sequences of instructions which, due to the pipelined execution,
would produce undetermined results. These sequences are either flagged as errors
by the software tools or masked off by the hardware.

6.3.1 Loop Register Restrictions

When either the LE, LC or LS register is loaded from memory with a LDX or LDY

instruction, the loop end comparison is not done.

This means that loop registers can not be loaded by instruction whose address is
LE−2. If this is done, further loop rounds are ignored and the execution continues
linearly.

The LDC instruction does not have this restriction and the loop hardware uses
the value loaded with an LDC if it is needed on the same cycle. Also, the LOOP

instruction does not have the restriction so single instruction loops are allowed.

illegal_example:

ldc loop_end1,le

ldx (i0),lc /* le comparison not done */

nop

loop_end1:

nop

legal_example:

ldc 2,lc

ldc loop_start,ls

ldc loop_end2,le /* le comparison is done */

nop

loop_end2:

nop

Rev. 4.2 2008-03-14 Page 39

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 6

6.3.2 Conditional Jump Restrictions

The instruction immediately before the jump instruction (JRcc or Jcc) must not
change the flags that affect the jump condition.

For example, if the jump is a JCC (jump if carry clear) the instruction immediately
before must not change the C flag. In practice, this means that instruction must
not be an ALU instruction. X and Y memory accesses can be made since they do
not affect the “carry clear” condition.

example:

ldx (i0)+1, NULL /* must not change C flag */

jcc jump_target

nop /* jump delay slot */

The reason for this restriction is the fact that the jump condition is determined
during the decode phase. In a normal (linear) execution, the instruction immedi-
ately before the jump does not affect the jump. The situation is different if the
jump instruction is canceled due to an interrupt. When execution returns from
the interrupt to the normal execution flow, the instruction immediately before the
jump has been executed. The jump condition is determined again, this time with
different flags.

Rev. 4.2 2008-03-14 Page 40

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

7 Instruction Coding

7.1 General Instruction Composition

The instruction is composed of a 4-bit opcode and additional fields as described
below.

31 28

o o o o

opcode

27 6

i i

immediate

5 0

y y y y y y

target

31 28

o o o o

opcode

27 0

c c

control instruction

31 28

o o o o

opcode

27 14

x x x x x x x x x x x x x x

X full move

13 0

y y y y y y y y y y y y y y

Y full move

31 28

o o o o

opcode

27 17

a a a a a a a a a a a

arithmetic operands

16 0

m m m m m m m m m m m m m m m m

parallel moves

7.2 Opcode Field

The encoding of operations is shown in Table 2. The control and double move
extensions to the opcode are described in the following section.

7.3 Control Instructions

The absolute address in jump instructions is at most 20 bits. The conditional
jumps Jcc are taken when the condition given in the instruction is true. See
Table 1 (Jump condition) for the condition field coding. The flag and mode bits
can be masked by the implementation parameter Modemask, see Chapter 4.

Return (JRcc) and return from interrupt (RETI) use the link registers to restore
the PC. The linking (return address storage) is done by a constant load instruction
to the link register LR0 (the link register should be saved beforehand in case of a
subroutine already being executed). The return address is calculated at compila-
tion/linking time, not run-time. This allows also jumps by loading the link register

Rev. 4.2 2008-03-14 Page 41

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 2: Operation Codes

Binary code Operation Parallel

000X LDC none
0010 Control none
0011 Double moves none
0100 ADD yes
0101 MAC yes
0110 SUB yes
0111 MSU yes
1000 ADDC yes
1001 SUBC yes
1010 ASHL yes
1011 AND yes
1100 OR yes
1101 XOR yes
1110 (reserved)
1111 Single op instructions yes

Table 3: Control Instructions

Binary code Operation Sub-fields Additional fields

0000dddddddd JRcc condition
0001dddddddd RETI

0010dxxxyyyd RESP x = op2, y = op1
01nnnnnnnnnn LOOP loop end lsb,

n = loop end msb register
(loop count)

1000nnnnnnnn Jcc n = address msb address lsb,
condition

1001nnnnnnnn CALLcc n = address msb address lsb,
condition

1010nnnnnnnn JMPI n = address msb address lsb,
index reg

1011nnnnnnnn MVX/MVY move fields
1101nnnnnnnn HALT

111000000000

· · · (reserved)
111111111111

Rev. 4.2 2008-03-14 Page 42

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

and then executing the JRcc instruction. The linking can be done also in the de-
lay slot. The LR1 loading takes place automatically when interrupt processing is
started.

In the loop instruction there is a register number containing the loop count. All
registers except the double-size accumulators can be used. The loop end address
is given as an immediate (at most 20 bits) value. The loop start address will be
loaded automatically from the PC. The loop registers (LC, LS, LE) should not be
loaded within the two instructions preceding a loop end to avoid implementation-
dependent ambiguities in the loop behavior.

In the full size moves, the load/store operations can use all the addressing modes
and all registers. These moves do not allow any control operations in parallel. See
section 7.5 for move encoding.

RESP is a special instruction to restore the P register.

The rest of the control instructions are reserved for future extensions.

Rev. 4.2 2008-03-14 Page 43

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 4: ALU operand encoding.

Binary code register composition

0000 A0 S:A0:0000

0001 A1 S:A1:0000

0010 B0 S:B0:0000

0011 B1 S:B1:0000

0100 C0 S:C0:0000

0101 C1 S:C1:0000

0110 D0 S:D0:0000

0111 D1 S:D1:0000

1000 NULL 0:0000:0000

1001 ONES F:FFFF:FFFF

1010 (reserved) (reserved)
1011 P S:P1:P0

1100 A A2:A1:A0

1101 B B2:B1:B0

1110 C C2:C1:C0

1111 D D2:D1:D0

7.4 Arithmetic Operands

The operands of two-operand arithmetic and logic instructions (ADD, SUB, AND, OR,
XOR) are encoded in the second field of these instructions. The field is composed
as follows:

27 24

alu op1

23 20

alu op2

19 17

alu result

Table 4 (ALU operand) gives the encoding of Op1 and Op2 of the ALU (fields alu

Table 5: ALU result coding

Binary code 16-bit register 40-bit register

000 A0 (reserved)
001 A1 A

010 B0 (reserved)
011 B1 B

100 C0 (reserved)
101 C1 C

110 D0 (reserved)
111 D1 D

Rev. 4.2 2008-03-14 Page 44

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 6: Mul operand.

Binary code register

000 A0

001 A1

010 B0

011 B1

100 C0

101 C1

110 D0

111 D1

Table 7: Mul mode.

Binary code op1 op2

00 signed signed
01 signed unsigned
10 unsigned signed
11 unsigned unsigned

op1 & alu op2). S denotes sign extension.

Table 6 (Mul operand) gives the encoding of fields mac op1 and mac op2.

The opcode of single-operand arithmetic and logic instructions (ABS, LSR and MUL)
is encoded in the first operand field. The encoding is:

27 24

single opcode

23 20

alu op2

19 17

alu result

In MAC:
27 25

mul op1

24 23

mode

22 20

mul op2

19 17

alu result

In MUL:
27 25

MUL opcode

24 23

mode

22 20

mul op2

19 17

mul op1

Table 7 (Mul mode) gives the encoding of the mode field.

The result field encoding is shown in Table 5.

Table 4 (ALU operand) gives the encoding of Op2 of the ALU (field alu op2).

Rev. 4.2 2008-03-14 Page 45

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 8: Single operand ALU instructions.

Binary code Operation

0000 ABS

0001 ASR

0010 LSR

0011 LSRC

0100 NOP

0101 EXP

0110 SAT

0111 RND

1000

· · · (reserved)
1101

111X MUL

The single-operand opcode encoding is given in Table 8.

Rev. 4.2 2008-03-14 Page 46

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

7.5 Move Encoding

The move instructions are LDX, LDY, LDI, STX, STY, and STI, the X, Y, and I
denoting the desired data bus to be used. There can be a maximum of two moves
(loads or stores) in parallel, one operating on the X bus and the other on Y bus.
Constant loading is described separately in section 7.7.

There are two kinds of moves: full moves and short moves.

The short moves use a restricted set of registers and restricted addressing modes.
The full moves have all registers and all addressing modes available.

The parallel moves can be done together with arithmetic operations, and can
either be one full or two short moves. Long-X and I-bus moves are only available
as parallel moves. Double full move instruction has two full moves, but can not be
executed in parallel with other instructions.

The full move field is always the following 14-bit control field:

13 10

s r r r

9 6

p p p p

5 0

R R R R R R

In short moves the move field is as follows:

13 10

s r r r

9 6

p 0 0 0

5 0

0 0 0 R R R

s = 1-store/0-load, r = address register, p = post modification mode,
R = move source/destination register.

In the double full move the 14-bit fields come directly after the instruction.

27 14

s r r r p p p p R R R R R R

X full move

13 0

s r r r p p p p R R R R R R

Y full move

Parallel move can be either one full move, two short moves, register-to-register
move, long-X move, or I-bus move. The coding of parallel moves is:

16 14

0 b 0

13 0

s r r r p p p p R R R R R R

full move
b = bus (0=X,1=Y)

16

1

15 8

s r r r p R R R

X short move

7 0

s r r r p R R R

Y short move

Rev. 4.2 2008-03-14 Page 47

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 9: Registers in short move.

Binary code Register

00a A0 . . . A1
01a B0 . . . B1
10a C0 . . . C1
11a D0 . . . D1

16 14

0 0 1

1312

0 0

11 0

s s s s s s d d d d d d

reg-to-reg move (Y bus)

16 14

0 0 1

13 10

0 1 0 0

9 0

s r r r R R R R R R

long-X move

16 14

0 0 1

13 10

0 1 0 1

9 0

s r r r p p p p R R

I-bus move

The coding of the store/load bit is given in Table 11. The rrr register is the
number of the desired address register. The src/dest register number ((RRR)RRR)
is given in Table 10 (Source and target), and the addressing mode in Table 12.
See also section 7.6 for further description of the addressing modes available. The
post modification pppp is a four-bit two’s complement number (-7 ... +7), which
is added to the address register. The code -8 is for the additional address post
modification modes found in In.

The In is the index register the number of which is generated by inverting the LSB
bit of the number of register In. The post modifications by the In are defined in
Table 13.

7.6 Addressing Modes

The addressing modes and their availability in short and full formats are sum-
marized in Table 14. The addressing modes available in the implementation are
controlled by the parameter Addressing mode mask, which has enable bits for the
modulo, bit-reversal and (reserved) addressing modes in the following manner:

(reserved) bitrev modulo

For the details of how the modulus mode works, see Chapter 3.1.2.

Rev. 4.2 2008-03-14 Page 48

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 10: Registers in full move.

Binary code Register

00000a A0 . . . A1
00001a B0 . . . B1
00010a C0 . . . C1
00011a D0 . . . D1

001000 LR0

001001 LR1

001010 MR0

001011 (reserved)
001100 NULL (update index reg & flags)
001101 LC

001110 LS

001111 LE (optional)

010rrr I0 ... I7

100000 A2

100001 B2

100010 C2

100011 D2

100100 Move NOP (no updates)

100101

· · · reserved
111101

111110 IPR0

111111 IPR1

Table 11: Load/Store coding.

Binary code Mode

0 load
1 store

Table 12: Addressing Modes.

Binary code Mode

rrrpppp indirect [In] with post modify by pppp (-7...+7)
rrr1000 indirect [In] with post modification specified in In

Rev. 4.2 2008-03-14 Page 49

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 13: Modifications by the In register.

Binary code Modification

000 In = (In+m) (m positive)
001 In = [(In+m(12 : 6))%(m(5 : 0) + 1)]
01 In = [(In+m(13 : 6))%(m(5 : 0)× 64 + 64)]
100 In = [(In+1)%(m + 1)]
101 In = [(In−1)%(m + 1)]
110 In = (In+m) bit reverse
111 In = (In+m) (m negative)

7.7 Constant Loading

The additional fields in the constant load instruction LDC look like:

27 6

immediate

5 0

register

The immediates are assumed signed and will be sign extended if the register is
wider than the immediate. In case there are more bits in the immediate than in
the register to be loaded, the LSB part is taken. The register number is encoded
as in the full addressing load/stores, shown in Table 10.

Rev. 4.2 2008-03-14 Page 50

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 7

Table 14: Addressing mode summary.

Mode full move code short move code In parameter

Linear post-inc/dec

(In) srrr0000RRRRRR srrr0RRR — —
(In)+1 srrr0001RRRRRR N/A — —
(In)+2 srrr0010RRRRRR N/A — —
(In)+3 srrr0011RRRRRR N/A — —
(In)+4 srrr0100RRRRRR N/A — —
(In)+5 srrr0101RRRRRR N/A — —
(In)+6 srrr0110RRRRRR N/A — —
(In)+7 srrr0111RRRRRR N/A — —
(In)–1 srrr1111RRRRRR N/A — —
(In)–2 srrr1110RRRRRR N/A — —
(In)–3 srrr1101RRRRRR N/A — —
(In)–4 srrr1100RRRRRR N/A — —
(In)–5 srrr1011RRRRRR N/A — —
(In)–6 srrr1010RRRRRR N/A — —
(In)–7 srrr1001RRRRRR N/A — —

(In)* Linear post-inc/dec
(In)+m, m ≥ 0 srrr1000RRRRRR srrr1RRR 000 mmmm...mmmm —
(In)+m, m < 0 srrr1000RRRRRR srrr1RRR 111 mmmm...mmmm —
(In)* Modulo post-inc/dec
(In)+n%m srrr1000RRRRRR srrr1RRR 001 nnnn...mmmm amm[0]
(In)+n%m×64 srrr1000RRRRRR srrr1RRR 01n nnnn...mmmm amm[0]
(In)+1%m srrr1000RRRRRR srrr1RRR 100 mmmm...mmmm amm[0]
(In)–1%m srrr1000RRRRRR srrr1RRR 101 mmmm...mmmm amm[0]
(In)* Bit reversal
(In)+m bit-rev srrr1000RRRRRR srrr1RRR 110 mmmm...mmmm amm[1]

Register as source/destination

An srrrpppp000RRR srrrpRRR — —
An ext srrrpppp1000RR N/A — g > 0
LR0, LR1 srrrpppp00100R N/A — —
MR0, MR1 srrrpppp00101R N/A — —
NULL srrrpppp001100 N/A — —
NOP srrrpppp100100 N/A — —
LC srrrpppp001101 N/A — lc ≥ 1
LS srrrpppp001110 N/A — lc ≥ 1
LE srrrpppp001111 N/A — lc ≥ 1
In, n=0· · ·7 srrrpppp010RRR N/A — —

Rev. 4.2 2008-03-14 Page 51

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

8 Software Examples

8.1 Single-Precision FIR Transversal Filter

This code implements an single-precision single-sample direct-form (transverse) 16-
stage FIR filter. The input and the coefficients are 16 bits wide, the intermediate
results being 32 bits.

.sect data_x, XData

delay:

.zero 15 // x[-15]...x[-1] (delay line) at startup

input:

.uword 0x1234 // x[0] at startup

output:

.zero 1

.sect data_y, YData

coef:

.zero 16

.sect code, Single_precision_FIR

fir:

LDC 0x400,mr0 // fractional & saturation mode

LDC input,i0 // point to the newest sample

LDC -1,i1 // linear -1

LDC coef,i2

LDC 1,i3 // post-increment by 1 addressing

LDC output,i4 // pointer to output buffer

AND a,NULL,a; LDX (i0)*,b1; LDY (i2)*,b0

// clear a-reg., load first sample/coef.-pair

LDC 15,ls // loop count, number of loops minus one

// use otherwise unused ls-register

LOOP ls,firloopend-1 // start looping

MUL b1,b0; LDX (i0)*,b1; LDY (i2)*,b0

// perform first multiply, load next pair

firloop:

MAC b1,b0,a; LDX (i0)*,b1; LDY (i2)*,b0

// use pipelined MAC to implement FIR

firloopend:

STX a1,(i4) // store result

endfir:

.end

Rev. 4.2 2008-03-14 Page 52

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

8.2 Double-Precision FIR Transversal Filter

This code implements an double-precision single-sample FIR filter. The input and
the filter coefficients are 32 bits wide, the intermediate results 64 bits.

Algorithm:
(A × 216 + B) × (C × 216 + D) = AC × 232 + AD × 216 + BC × 216 + BD
In this example, AC is first added to a-reg, then BD to b-reg. and after that BC
to a1:b0 and finally AD to a1:b0

.sect data_x, XData

input:

input_hi:

.uword 0x9234,0x6666,0x7654

.zero 14

output:

output_hi:

.zero 16

coef:

coef_hi:

.uword 0x8001,0xffff,0x5656

.zero 14

.sect data_y, YData

input_lo:

.uword 0x5678,0x4444,0x9f01

.zero 14

output_lo:

.zero 16

coef_lo:

.uword 0xffff,0xeeee,0xaeae

.zero 14

Rev. 4.2 2008-03-14 Page 53

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

.sect code,Double_precision_FIR

fir:

/* Double precision single-sample FIR */

LDC 0x200,mr0

LDC input,i0

LDC -1,i1 // Linear -1 addressing

// LDC 1,i1

LDC coef,i2

LDC 1,i3

AND a,NULL,a // intermediate results in a:b

AND b,NULL,b // set result to zero

LDC 15,ls // 16 stages

LOOP ls,firloopend-1

LDC output,i4

firloop:

/* Next sample from delay line -> c, next coefficients -> d */

LDX (i0),c1; LDY (i0),c0

LDX (i2),d1; LDY (i2)*,d0

/* 32x32-bit MAC with 64-bit result */

MULUU c0,d0

ADD b,p,b

MULSS c1,d1

ADDC a,p,a

MULUS c0,d1

ADD NULL,p,c

ADD c0,b1,b1; LDX (i0)*,c0

LDC 1,d1

MULSS d1,c1 // sign extend BC(31..16)

ADDC a,p,a

MULSU c0,d0

ADD NULL,p,c

ADD c0,b1,b1

MULSS d1,c1 // sign extend AD(31..16)

ADDC a,p,a // result after this stage in a:b

firloopend:

/* scale result to Q31 and store */

LSL b,b

LSLC a,a

STX a1,(i4); STY a0,(i4)+1 // store output

endfir:

NOP

.end

Rev. 4.2 2008-03-14 Page 54

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

8.3 Cascaded Biquad IIR Filter

This code implements a single-sample IIR filter as a cascade of second-order biquad
sections. The number of sections in this example is 8.

#define BIQUADS 8

.sect data_x, XData
dly: // delay line, z(-2)’s

.uword 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88 // BIQUADS
coef: // coefficients, a11, b11, a12,...

.uword 0x100,0x200,0x300,0x400// 2*BIQUADS

.uword 0x500,0x600,0x700,0x800

.uword 0x1100,0x1200,0x1300,0x1400

.uword 0x1500,0x1600,0x1700,0x1800
input:

.uword 0x1234
output:

.zero 1

.sect data_y, YData
dly_1: // delay line, z(-1)’s

.uword 0x111,0x222,0x333,0x444 // BIQUADS

.uword 0x555,0x666,0x777,0x888
coef_1: // coefficients, a21, b21, a22,...

.uword 0x2100,0x2200,0x2300,0x2400 // 2*BIQUADS

.uword 0x2500,0x2600,0x2700,0x2800

.uword 0x3100,0x3200,0x3300,0x3400

.uword 0x3500,0x3600,0x3700,0x3800

.sect code,Biquad_IIR
iir:

LDC 0x400,mr0
LDC input,i0
AND a0,NULL,a0; LDX (i0),a1 // input -> a
LDC dly,i0
LDC coef,i2
LDC 1,i3
LDC BIQUADS-1,ls
LOOP ls,biquadloopend-1
LDC output,i4
LDX (i2),b0; LDY (i0),b1 // a11 -> b0, z(-1) -> b1
MUL b0,b1; LDX (i0),b0; LDY (i2)*,c0

// z(-2) -> b0, a21 -> c0
MAC b0,c0,a; LDX (i2),c0; LDY (i2)*,c1

// b11 -> c0, b21 -> c1
MAC c0,b1,a; STX b1,(i0) // z(-2) = z(-1)
MAC c1,b0,a; STY a1,(i0)+1 // z(-1) = t
ADD a,p,a // result after this biquad to a-reg.

biquadloopend:
STX a1,(i4) // store output

iirend:
.end

Rev. 4.2 2008-03-14 Page 55

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

8.4 Single-Precision Matrix Multiply

C = A × B matrix multiplication, matrix dimensions: A[5][4], B[4][3], C[5][3].

Note: to test with integers, use mode 0x600 instead of 0x400 and store a0 (or the
whole a-reg.) instead of a1.

.fract 15

/* Matrices’ dimensions */

#define RA 5

#define CA 4

#define RB CA

#define CB 3

#define RC RA

#define CC CB

.sect data_x,XData

matrixA:

.uword 1,2,3,4

.uword 5,6,7,8

.uword 9,1,2,3

.uword 4,5,6,7

.uword 8,9,1,2

.sect data_y,YData

matrixB:

.uword 12,13,14

.uword 15,16,17

.uword 18,19,20

.uword 21,22,23

matrixC:

.zero 15

.sect code,Matrix_Multiply

mult:

LDC 0x400,mr0 // saturation & fractional mode

LDC matrixA,i0

LDC 1,i1

LDC matrixB,i2

LDC CB,i3

LDC matrixC,i4

LDC CA-1,c0 // loop counter for one output value

LDC RC,d0 // loop counter for rows

nextrow:

LDC CC,d1 // loop counter for columns

nextcolumn:

AND a,NULL,a; LDX (i0)*,b1; LDY (i2)*,b0

// out=0 -> a

LOOP c0,inloopend-1

MUL b0,b1; LDX (i0)*,b1; LDY (i2)*,b0

MAC b0,b1,a; LDX (i0)*,b1; LDY (i2)*,b0

// out+=A[i][k]*B[k][j]

inloopend:

LDC -(CA+2),i1 // modify addresses before

LDC 1-CB*(CA+2),i3 // the next round (next column)

LDX (i2)*,NULL; STY a1,(i4)+1 // store C[i][j]

ADD d1,ONES,d1; LDX (i0)*,NULL

LDC 1,i1 // restore modifiers

JZC nextcolumn

LDC CB,i3

LDC CA,i1 // modify addresses before

LDC -CB,i3 // the next round (next row)

ADD d0,ONES,d0; LDX (i0)*,NULL

LDX (i2)*,NULL

LDC 1,i1 // restore modifiers

JZC nextrow

LDC CB,i3

endmult:

.end

Rev. 4.2 2008-03-14 Page 56

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

8.5 Floating-Point Multiplication and Addition

Single-precision, i.e., a0 exponent (16 bits signed), a1 mantissa 1.15 format (Q15)
(from -1.0 to 0.9999999...9).

f mul multiplies a and b and puts result in c, f add is the addition routine (c = a
+ b) and f sub is the subtraction (c = a - b).

.fract 15

// Maximum difference in exponents

// If the difference is greater, no calculation is done

// and larger number is returned

#define _F_MAX_EXP_DIFF 16

// Stack pointer index register

#define SP i6

.sect code,Floating_point

// Fractional mode must be set, saturation mode must be unset

// e.g. LDC 0x0000,mr0

// a * b -> c

f_mul:

MULSS a1,b1

ADD NULL,p,c // truncate mode

J f_norm_res

ADD a0,b0,d0

/* a + b -> c */

f_add:

SUB a0,b0,d0; LDX (i6)+1,NULL

// make room to stack

LDC _F_MAX_EXP_DIFF,d1

JGE $1 // exp(a) >= exp(b)

ADD a,NULL,c // swap a,b

ADD b,NULL,a

ADD c,NULL,b

SUB a0,b0,d0

/* exp(a) >= exp(b) */

$1:

/* check the difference in exponents, save loop hw status */

SUB d0,d1,d1; STX lc,(i6)+1

STX ls,(i6); STY le,(i6)

JGE $2 // a is much bigger than b, return a

AND b0,NULL,b0 // zero lsp

/* shift a & b right 1 times to avoid overflow in add later */

/* loop shifts b 1 extra times */

/* shift b until it has the same exponent */

LOOP d0,$3-1

SUB a0,ONES,d0 // make result have exp(a)+1

ASR b,b

$3:

/* shift a 1 time, restore loop hw */

AND a0,NULL,a0; LDY (i6),le // zero lsp

ASR a,a; LDX (i6)-1,ls

/* a & b now have the same exp */

J f_norm_res

ADD a,b,c; LDX (i6)-1,lc // do the add

/* return a */

$2:

J f_norm

ADD a,NULL,c

/* a - b -> c */

f_sub:

J f_add // calculate a + (-b)

SUB NULL,b1,b1 // negate b1

/* Subroutines called by f_add, f_sub and f_mul */

// f_norm_res

// d0 exp

// c1:c0 mantissa

// norm(c) -> c

Rev. 4.2 2008-03-14 Page 57

VLSI
Solution y

PO

VSDSP4 USER’S MANUAL VSDSP

Chapter 8

f_norm_res:

ADD c,NULL,c // test mantissa for zero

NOP

JZC $1 // result is not zero

NOP

JR

AND c0, NULL, c0 // force exp to zero

$1:

ADD c1,c1,d1 // shift left for xor

XOR c1,d1,d1

NOP

JNS $2 // normalized, exit

ADD d0,ONES,d0

J $1

ADD c,c,c // shift left

/* exit, first adjust c0 by 1 */

$2:

JR

SUB d0,ONES,c0 // adjust back

f_norm:

ADD c0,NULL,d0

J f_norm_res

AND c0,NULL,c0

.end

Rev. 4.2 2008-03-14 Page 58

