OpenGL and shaders

A gentle introduction

"Ted’ uz vim, ze nemusim se bat
Tve oci nejsou z tohoto sveta"
- Visaci zamek

Jirl "BlueBear" Dluhos
(jiri.bluebear.dluhos@gmail.com)




Why the "new" OpenGL?

» idea in fact very old (since GL 2.0)

» what made the difference is the programmable
pipeline

» all 3D transformations, vertex formats, and methods
of rendering are programmer-settable, almost
nothing is fixed

e SO much freedom that it, for some, looks like chaos;
you need to choose almost everything and keep it
consistent

* |ots of extensions add to the complexity

* In short, the freedom can make you mad




Viewport coordinates

* maps the whole screen/window to (-1, +1) In both
coordinates (scales automatically; (O, 0) in centre
makes perspective matrices nicer)

+1

(-1, -1) +1




Coordinate transformations

map or scene coordinates,
often absolute, "objective"

view transformation 66

v

P\

the world as seen by the camera,
"subjective" (centered around
camera, rotated so that camera
looks forward)

&l

jective transformation

towards th ment shader



Vertex shader

called for each vertex

Input: vertex attributes (at a minimum, Iits position)

output:

* at a minimum, vertex coordinates in screen coordinates (viewport
coordinates + Z coordinate (depth) + W coordinate (weight))

» plus anything else the programmer wants to pass to the fragment
shader (e.g. color, texture coordinate, etc.)

output from the vertex shader is automatically /nterpolated and
perspective corrected (unless the programmer specifies
otherwise), then passed to the fragment shader

basic usage:
» coordinate transformations (MVP: model, view, projection matrix)
* per-vertex lighting

-



Trap #1

with the vertex shader, you can choose your coordinate
system, especially:

» |left-handed or right-handed
e left- or right- multiplication

 P*MV*vertex (vertex is a column vector) or
 vertex"MV™P (vertex Is a row vector)

... but that leads to differences between various
documents and how-tos




Fragment shader

called for each fragment (pixel candidate)

* note: this is very often, easily >1 million calls per scene

Input:

» vertex viewport coordinates + Z coordinate + weight

* any extra values passed from vertex shader, interpolated and
perspective-corrected by the hardware (typically texture
coordinates, normal and tangent vector)

output:
» fragment color or discarding a fragment

basic usage:

» texturing, texture blending, fog

» per-fragment lighting (using vectors passed from the vertex shader)

* bump-mapping (per-fragment lighting alterations based on a
texture)

-



A trivial shader combo

// VERTEX SHADER
#version 120 // this code is GLSL 1.2 compatible

// vertex attributes - what is sent to us for every vertex
in vec3 vCoords; // vertex coordinates
in vec3 vColor; // vertex color (RGB)

uniform mat4 vModelviewMatrix;
uniform mat4 vProjectionMatrix;

varying vec3 fColor; // sent to fragment shader, varies across the rendered triangle

vold main()

{

gl Position = vProjectionMatrix * vModelviewMatrix * vCoords;
fColor = vColor:

// FRAGMENT SHADER
#version 120

in vec3 fColor; // passed from the vertex shader and interpolated across the triangle

vold main()

{
}

gl FragColor = vec4(fColor, 1.0);



Exchanging data with shaders

- shader variables
e vertex attributes (sent for each vertex when
drawing)
 uniforms (directly settable/gettable, stay constant
during one drawing operation)
« GPU-side buffers
» reside In GPU memory (fast access from shaders)
e textures
* original use: pixmaps to draw on various objects
» can be used to send (and recelve) any data
(vectors, height values), can be even drawn onto

.



Trap #2

Starting from GL3.2, all data buffers are in GPU memory

+ much faster (thus allowing for better effects)

- you have to create and properly initialize about 4
objects just to get a triangle rendered (cca 15 GL calls)

dreaded
* when you have your code almost right (no GL errors
are produced) but nothing visible (some Initialization
IS forgotten somewhere)

-



Trap #3

GL APl is historically a state machine and this still mostly
persists; it has lots of global state

GL object -> bind -> configure -> unbind
GL object -> bind -> use -> unbind

(better with some extensions and GL>4.2)




A simple triangle (simplified

// Describes a single vertex
Vertex {

glm::vec3 coords;
glm: :vec3 color;

Vertex(const glm::vec3 coords, const glm::vec3 &color)
: coords(coords), color(color) {}

}i

// A multicolored triangle

std::array<Vertex, 3> vertices = {
Vertex(glm::vec3(-1.0f, -1.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0T)),
Vertex(glm::vec3(1.0f, -1.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f)),
Vertex(glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f))

}i

// preparation code: create a GPU-side buffer and upload the triangle data into it

glGenBuffers(1l, &vertex buffer);
glBindBuffer(GL ARRAY BUFFER, vertex buffer);
glBufferData(GL ARRAY BUFFER, vertices.size()* (Vertex), vertices.data(), GL STATIC DRAW);

// preparation code: locate the attributes (their offsets) in the shader's attribute table
attribute coords = glGetAttribLocation(shader program, "vCoords");
attribute color = glGetAttribLocation(shader program, "vColor");

// ... 1n rendering code:

glUseProgram(shader program);

glBindBuffer(GL ARRAY BUFFER, vertex buffer);
glVertexAttribPointer(attribute coords, 3, GL FLOAT, GL FALSE,

(Vertex), reinterpret cast<void*>(offsetof(Vertex, coords)));
glVertexAttribPointer(attribute color, 3, GL FLOAT, GL FALSE,

(Vertex), reinterpret cast<void*>(offsetof(Vertex, color)));
glEnableVertexAttribArray(attribute coords);
glEnableVertexAttribArray(attribute color);
glDrawArrays(GL TRIANGLES, 0, 3);




Resources

» Wikipedia has many good articles

o start here: en.wikipedia.org/wiki/3D _projection
* www.lighthouse.org
» www.opengl.org/wiki - very practical reference




